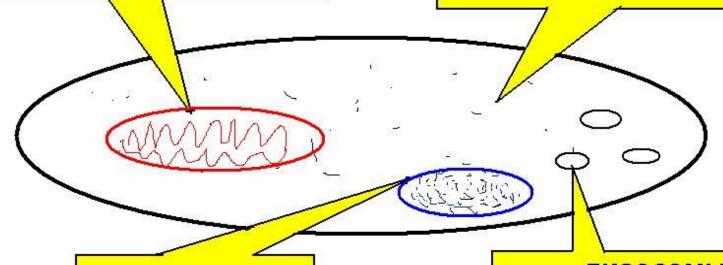

РЕГУЛЯЦИЯ И ВЗАИМОСВЯЗЬ МЕТАБОЛИЗМА

Зав. кафедрой биохимии профессор В.В. Лелевич

Типы метаболических путей


Схема	Название	Пример
$A \longrightarrow B \longrightarrow C \longrightarrow D \longrightarrow E$	Линейный	Гликолиз
D→E	Разветвленный	Синтез нуклеотидов
$A \rightarrow B \rightarrow C$ $F \rightarrow G =$	Циклический	Цикл трикарбоновых
E D		кислот Синтез мочевины
A → B → C E D	Спиральный	Бета-окисление жирных кислот

митохондрия

- Окислительное декарбоксилирование пирувата;
- Цикл трикарбоновых кислот;
- окисление жирных кислот

ЦИТОПЛАЗМА

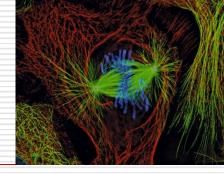
- Гликолиз;
- Глюконеогенез;
- Синтез белка;
- Синтез жирных кислот;
- Синтез холестерина

ЯДРО Синтез ДНК и РНК ЛИЗОСОМЫ Деградация комплексов макромолекул

- □ Основой регуляции является перенос и трансформация информации (химические и физические сигналы)
- □ Информация снижает энтропию и способствует организации живой системы
- □ Высокая организация и скоординированность метаболизма достигается благодаря действию регуляторных механизмов

Для нормального функционирования многоклеточного организма необходима взаимосвязь между отдельными клетками, тканями и органами. Эту связь осуществляют 4 основные системы регуляции:

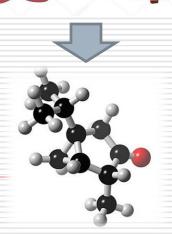
4 основные системы регуляции:


- 1. ЦНС и ПНС (через нервные импульсы и нейромедиаторы);
- 2. Эндокринная система (гормоны);
- 3. Паракринная и аутокринная системы (простагландины, гормоны ЖКТ, гистамин и др.);
- 4. Иммунная система (через специфические белки цитокины, антитела).

Системы регуляции обмена веществ и функций организма образуют 3 иерархических уровня:

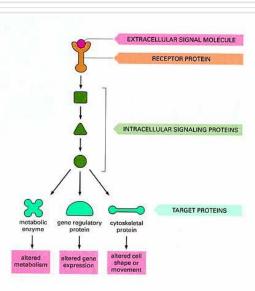
1. ЦНС (поступающие сигналы \rightarrow нервный импульс \rightarrow нейромедиаторы \rightarrow изменение метаболизма в эффекторных клетках).

2. Эндокринная система (гипоталамус → гипофиз → периферические эндокринные железы → гормоны → регуляторный эффект).


- 3. Внутриклеточный уровень (изменения метаболизма в пределах клетки:
 - изменения активности ферментов
 - изменения количества ферментов
 - изменения скорости транспорта через мембрану).

УРОВНИ РЕГУЛЯЦИИ МЕТАБОЛИЗМА

- 1. Организменный
 - а) контроль ЦНС
 - б) эндокринная система
- 2. Органный (тканевой)
- 3. Клеточный
- 4. Молекулярный


<u>Быстрая регуляция</u> – в течение секунд-минут <u>Медленная регуляция</u> – в течение часов-дней.

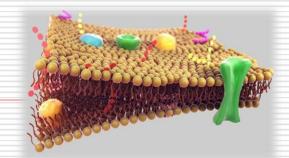
ОСНОВНЫЕ МЕХАНИЗМЫ РЕГУЛЯЦИИ МЕТАБОЛИЗМА

- 1. Регуляция с участием мембран
- 2. Регуляция с участием циклических нуклеотидов
- 3. Изменение количества фермента
- 4. Регуляция активности фермента
- 5. Гормональная регуляция

ОСНОВНЫЕ ФУНКЦИИ МЕМБРАН

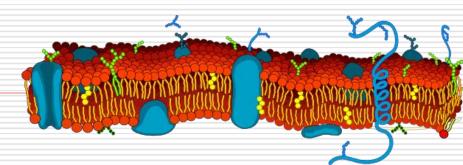
- □ Отделение клетки от окружающей среды и формирование внутриклеточных компартментов (отсеков)
- Контроль и регулирование транспорта веществ через мембраны
- Участие в обеспечении межклеточных взаимодействий, передаче внутрь клетки сигналов
- Преобразование энергии пищевых органических веществ в энергию АТФ

ПЕРЕНОС ВЕЩЕСТВ ЧЕРЕЗ МЕМБРАНЫ


- □ ПАССИВНАЯ ДИФФУЗИЯ
- ПРОСТАЯ ДИФФУЗИЯ
- 🗆 ОБЛЕГЧЕННАЯ ДИФФУЗИЯ (БЕЛКИ ТРАНСЛОКАЗЫ).
- □ АКТИВНЫЙ ТРАНСПОРТ
 - ПЕРВИЧНО-АКТИВНЫЙ ТРАНСПОРТ (ЗА СЧЕТ ЭНЕРГИИ АТФ)
 - ВТОРИЧНО-АКТИВНЫЙ ТРАНСПОРТ (ПЕРЕНОС ОДНОГО ВЕЩЕСТВА ПРОТИВ ГРАДИЕНТА КОНЦЕНТРАЦИИ ЗАВИСИТ ОТ ПЕРЕНОСА ДРУГИХ)
- □ ИЗБИРАТЕЛЬНАЯ ПРОНИЦАЕМОСТЬ МЕМБРАН

ТРАНСМЕМБРАННАЯ ПЕРЕДАЧА СИГНАЛА

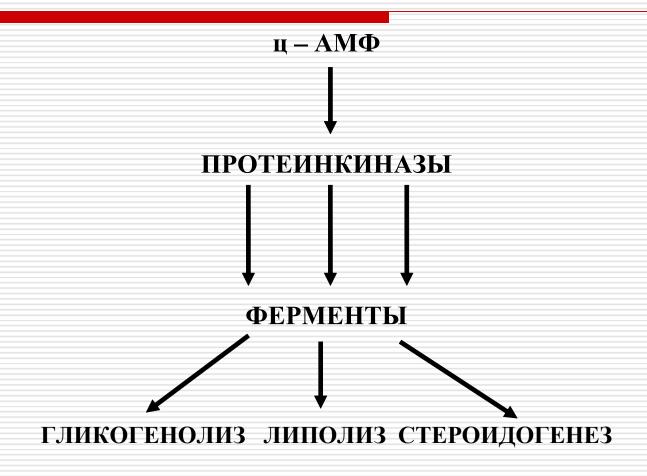
Если мембранный рецептор воспринимает сигнальную молекулу (гормоны, медиаторы, эйкозаноиды, фактор роста, оксид азота) то схема передачи информации выглядит так:


- Взаимодействие сигнальной молекулы с рецептором
- Активация мембранного фермента, ответственного за образование вторичного посредника
- □ Образование вторичного посредника цАМФ, цГМФ, инозитолтрифосфаты, диацилглицерол, Ca2+.
- **Активация посредниками протеинкиназ, которые** фосфорилируют регуляторные ферменты.

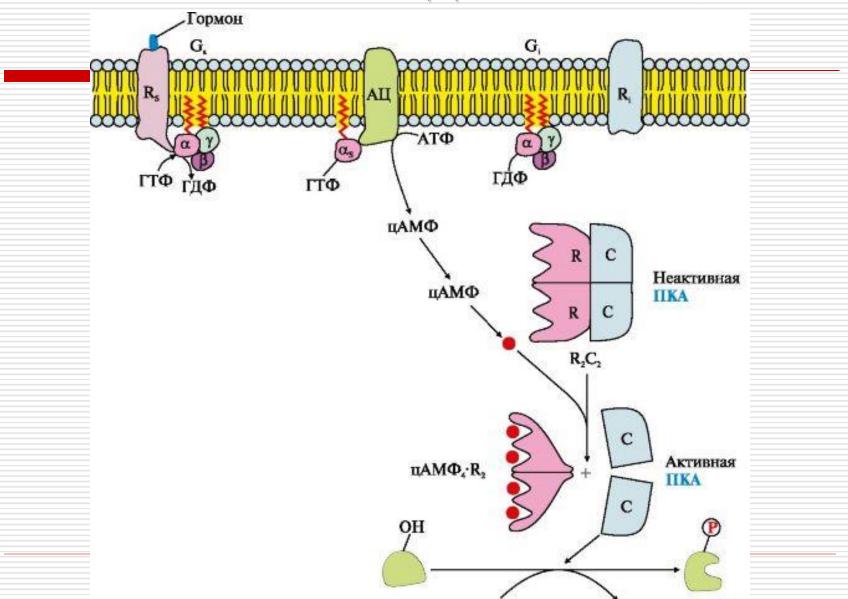
- ФЕРМЕНТАТИВНАЯ АКТИВНОСТЬ МЕМБРАН
- 🔲 аденилатциклаза
- гуанилатциклаза
- АТФаза
 - УЧАСТИЕ МЕМБРАН В МЕЖКЛЕТОЧНЫХ ВЗАИМОДЕЙСТВИЯХ
- контактное ингибирование
- регуляция клеточного роста
- межклеточная адгезия

С помощью мембран реализуются:

- □ Доступность субстратов
- □ Доступность кофакторов
- Удаление продуктов реакции
- □ Всасывание в ЖКТ
- □ Движение воды и ионов
- Генерация и проведение нервного импульса



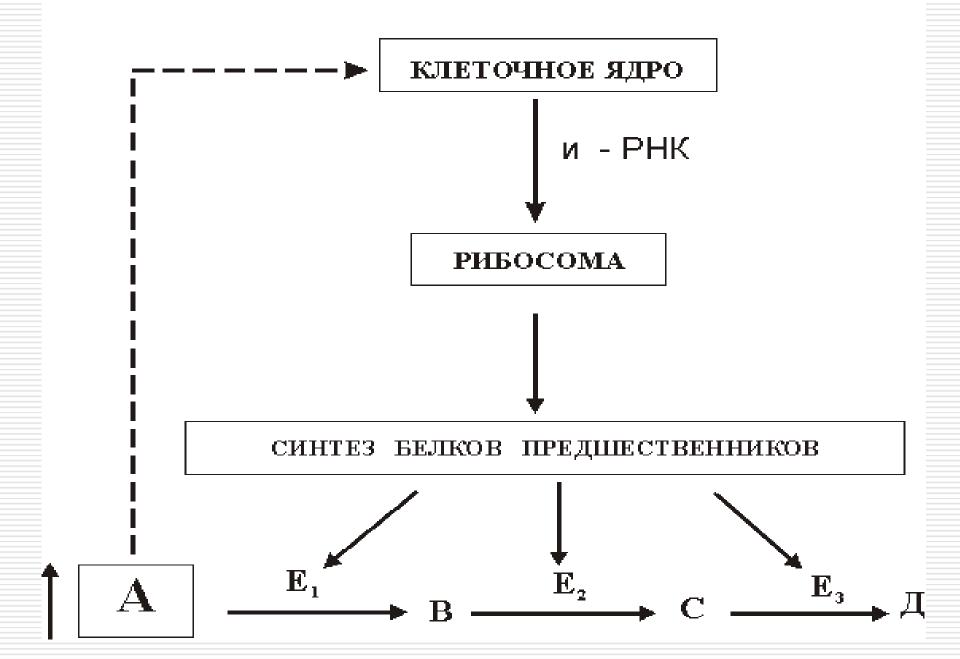
РЕГУЛЯЦИЯ С УЧАСТИЕМ ЦИКЛИЧЕСКИХ НУКЛЕОТИДОВ


ц-АМФ – была открыта в 1950 г. Сазерлендом при изучении механизма стимуляции гликогенолиза адреналином. Он назвал ц-АМФ «вторичным посредником» т.к. первичным посредником считал сам гормон.

Концентрация ц-АМФ в тканях составляет 0,1 — 1,0 мк Моль/кг массы.

БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ ц-АМФ

БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ ц-АМФ

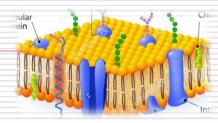

НЕКОТОРЫЕ БИОЛОГИЧЕСКИЕ ЭФФЕКТЫ ц-АМФ

ПРОЦЕСС	ТКАНЬ
Синтез белка	Печень
Проницаемость мембран для ионов	Нервная ткань, мышцы
Синтез стероидных гормонов	Кора надпочечников, желтое тело
Стимуляция гликогенолиза Торможение синтеза гликогена	Печень, мышцы «-
Стимуляция глюконеогенеза	Печень, корковое вещество почек
Торможение липогенеза	Печень, жировая ткань

ЦИКЛИЧЕСКИЙ – ГМФ

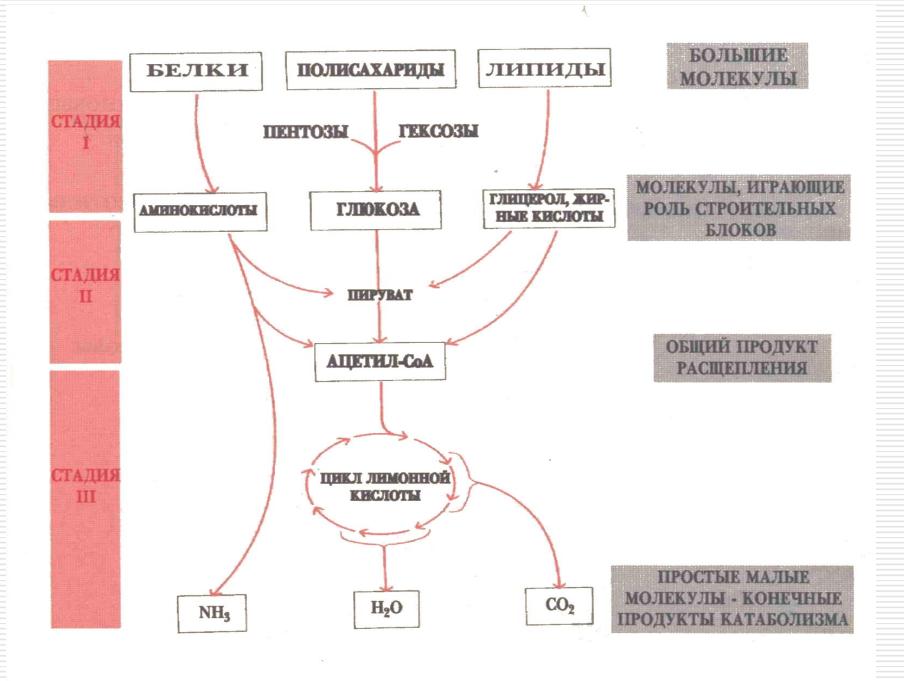
- □ Был открыт в 1963 г. Образуется из ГТФ под действием гуанилатциклазы
- Молекулы ц-ГМФ могут активировать ионные каналы либо активировать ц-ГМФ-зависимую протеинкиназу G, участвующую в фосфорилировании других белков в клетке.

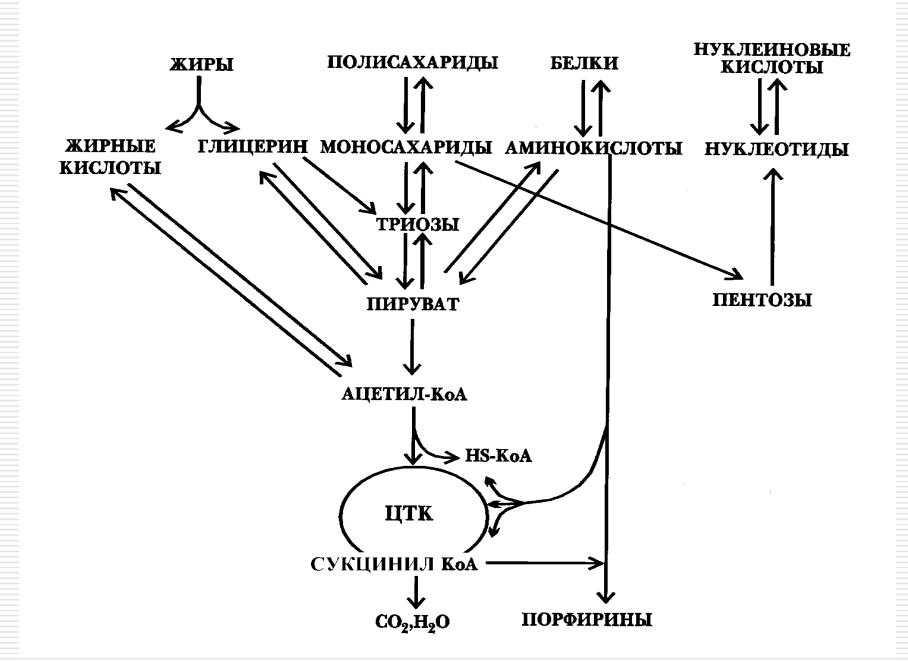
РЕГУЛЯЦИЯ КОЛИЧЕСТВА ФЕРМЕНТОВ

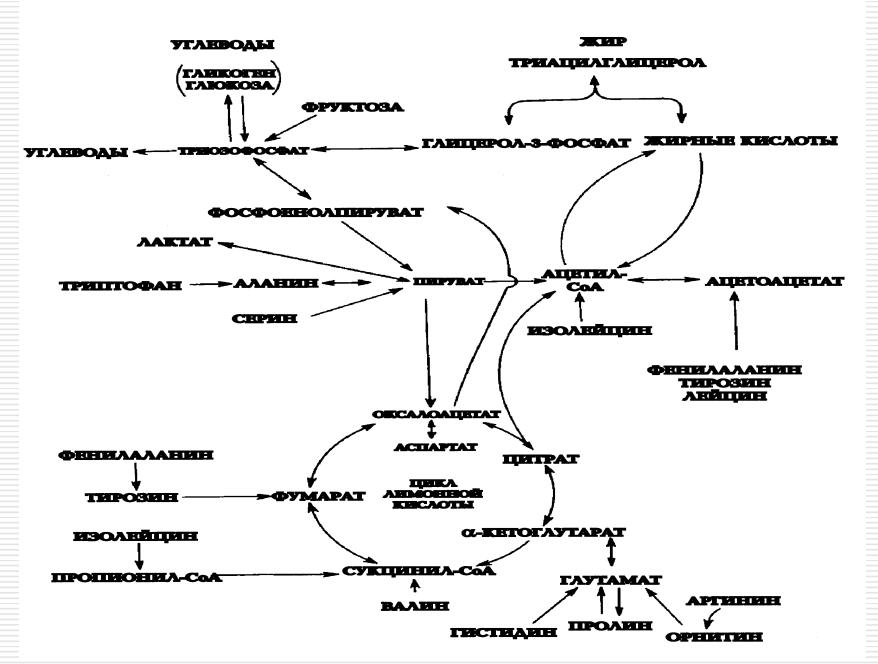


РЕГУЛЯЦИЯ АКТИВНОСТИ ФЕРМЕНТОВ

- проферменты-ферменты
 - пепсиноген-пепсин
 - трипсиноген-трипсин
- ковалентная модификация фермента
 - фосфорилирование дефосфорилирование
- ассоциация диссоциация субъединиц
- ингибирование по принципу обратной связи
- обратимое-необратимое ингибирование
- конкурентное-неконкурентное ингибирование
- аллостерическая регуляция


ИНТЕГРАЦИЯ (ВЗАИМОСВЯЗЬ) МЕТАБОЛИЗМА ОПРЕДЕЛЯЕТСЯ:


- наличием общих промежуточных продуктов в большей части метаболических путей
- возможностью взаимопревращений через общие метаболиты
- использованием общих коферментов
- наличием общего пути катаболизма (ЦТК) и единой системы освобождения энергии (ЦТД)
- наличием схожих механизмов регуляции


ЭНЕРГЕТИЧЕСКИЕ ВЗАИМОСВЯЗИ МЕЖДУ КАТАБОЛИЧЕСКИМИ И АНАБОЛИЧЕСКИМИ ПУТЯМИ

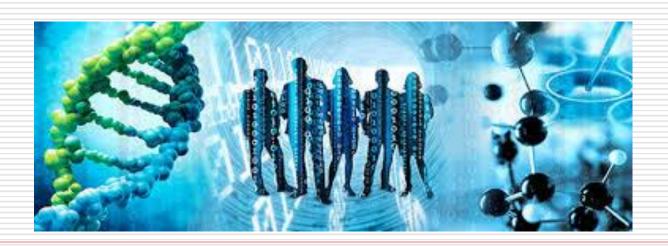
ВЗАИМОСВЯЗЬ ОБМЕНОВ

Ожирение — пример существования взаимосвязи метаболических путей из различных обменов (липидного, углеводного, энергетического).

При ожирении активируется синтез триацилглицеролов и их депонирования в жировой ткани.

Первичное ожирение развивается в результате избыточной калорийности питания по сравнению с энергозатратами. Часто это имеет место за счет избыточного потребления углеводов, т.е. при ожирении из глюкозы синтезируется глицерол и жирные кислоты с последующим образованием

триацилглицеролов.


Голодание – пример взаимосвязи метаболизма.

При голодании происходит активация процессов катаболизма жиров, гликогена и белков на фоне общего снижения скорости метаболизма.

Происходит обмен субстратами между печенью, жировой тканью, мышцами и мозгом с целью поддержания концентрации глюкозы в крови и обеспечения ею головного мозга, мобилизации источников энергии (липидов) для энергообеспечения других тканей.

СПАСИБО ЗА ВНИМАНИЕ!

