Biochemistry of Liver

Assoc.Prof. Ye.M.Doroshenko

General outline

More than 50% of dry residue - proteins

80% – hepatocytes Kupffer cells – part of phagocyte mononuclear system

link between gastrointestinal tract and blood

Buffer between portal vein (70% of hepatic circulation) and systemic circuit

Water content may vary (65-80%) – role in **regulation of water homeostasis** High content of protein (20%), glycogen (2-5%), lipids – up to 6%

high rate of energy metabolism high circulation time (up to 25% of minute volume) high rate of protein synthesis

Absorptive phase: synthetic pathways, accumulation of metabolic fuels breakdown of amino acids and glucose Post absorptive phase: providing other tissues with metabolic fuels breakdown of fatty acids

Metabolism of carbohydrates

- Regulation of glycemia
 - Increasing of glycemia:
 - glycogenolysis
 - gluconeogenesis

from lactate and alanine (originated from muscles)

from glycerol (from adipose tissue)

from amino acids

• Decreasing of glycemia:

glucokinase

 K_m for glucose 10-fold higher than hexokinase V_{max} 10-15-fold higher than hexokinase

not inhibited by G-6-P

transport protein with high K_{M} for glucose

synthesis of glycogen

G-6-P activates D-form of glycogen synthase

glucose binds to glycogen phosphorilase **a**, increasing its ability to dephosphorilation, *i.e. to inactivation*

Metabolism of carbohydrates

- Braking up glucose to precursors of:
 - other carbohydrates
 - fatty acids
 - cholesterol
 - ketone bodies
 - amino acids
- Formation of NADPH
 - for reductive biosyntheses (fatty acids, cholesterol)
- Formation of pentose phosphates
- Formation of glucuronic acid and its active form
 - takes part in the synthesis of carbohydrate parts of glycolipids and glycoproteins, components of extracellular matrix
- Metabolism of fructose and galactose
- Gluconeogenesis

Metabolism of lipids

• Synthesis of:

- TAG
- phospholipids
- cholesterol and its esters
 - cholesterol: free/esters 1 / 0.6
- bile acids
- synthesis of fatty acids
- β -oxidation of fatty acids
 - from adipose tissue
 - of exogenous lipids transported by chylomicrons
 - own lipids (TAG) of liver
- \bullet ratio of synthesis and $\beta\text{-}oxidation$ depends on ATP level
- synthesis of ketone bodies "export metabolic fuel", consumable in other tissues

Metabolism of lipids

- malonyl CoA level in liver determines the fate of acyl-CoA:
 - excess malonyl CoA (normal ATP level)
 - inhibits carnithine-acyltransferase I inhibition of β -oxidation and ketogenesis.
 - low malonyl CoA
 - activates β-oxidation and ketogenesis.

transport of lipids:

- formation of transport forms of endogenous lipids (VLDL, HDL),
- utilization of end products of metabolism of lipoproteins
 - uptake remnants of chylomicrons, VLDL, IDL, HDL.
- release of free fatty acids into blood
 - for catabolism in other tissues (muscles)
 - for accumulation as TAG (adipose tissue)
- 25-hydroxylation of vitamin D
- metabolism and excretion of steroid hormones

- Metabolism of proteins and amino acids:
 - Synthesis of:
 - liver proteins
 - most of proteins of blood plasma
 - serum enzymes (lipoproteinlipase, cholinesterase, blood coagulation factors)

• by synthesized proteins:

- maintaining osmotic pressure
- regulation of blood pressure and circulation volume
- blood clotting
- metabolism of iron
- **Regulation of amino acid content in blood plasma**, release of free amino acids into blood
- Degradation of protein and peptide hormones
- Utilization of amino acids in synthesis of
 - nucleotides
 - hormones
 - porphyrins
 - choline
 - creatine (2nd step: guanidine acetate → creatine)

- Metabolism of proteins and amino acids:
 - Amino acid metabolism
 - deamination
 - transamination
 - hydroxylation of amino acids
 - catabolism of amino acids to end products (acetyl-CoA and intermediates of TCA)
 - utilization of these products for syntheses
 - Detoxification of ammonia
 - urea synthesis
 - uric acid synthesis
 - high activity of xanthine oxidase
 - Detoxification of nitrogen and gluconeogenesis from amino acids, originated from other tissues (glucose-alanine cycle)
- Storage of
 - iron
 - vitamins A, B₁₂
 - glycogen

Compounds become

- more hydrophylic
- suitable for excretion with urine

Hydrophobic or high-molecular-weight compounds

excreted mostly with bile

Phases of detoxification

- biotransformation
 - hydroxylation
 - sulfo-oxidation
 - oxidative deamination
 - dealkylation
 - formation of epoxides
- conjugation
 - conjugation by transferases
 - hydrolysis of epoxides

$$RH \rightarrow ROH$$

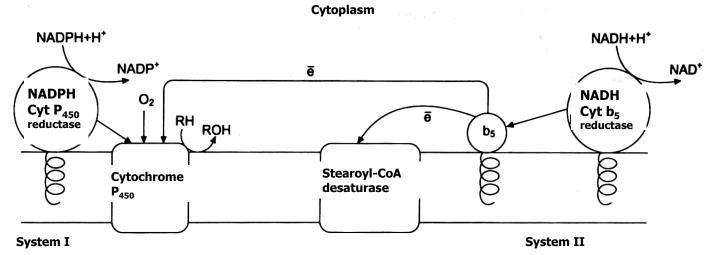
R-S-R' → R-S-R'

$$RNH_{2} \rightarrow RH=O + NH_{3}$$

$$RNHCH_{3} \rightarrow RNH_{2} + H_{2}C=O$$

$$ROCH_{3} \rightarrow ROH + H_{2}C=O$$

$$RSCH_{3} \rightarrow RSH + H_{2}C=O$$


$$R-CH=CH-R' \rightarrow R-CH - CH-R'$$

Microsomal oxidation

- wide substrate range (over 150 genes)
- regulation of activity (induction)
 - on transcriptional level or
 - on post-transcriptional level
 - over 250 inductors

barbiturates, polyaromatic hydrocarbons, steroids, etc.

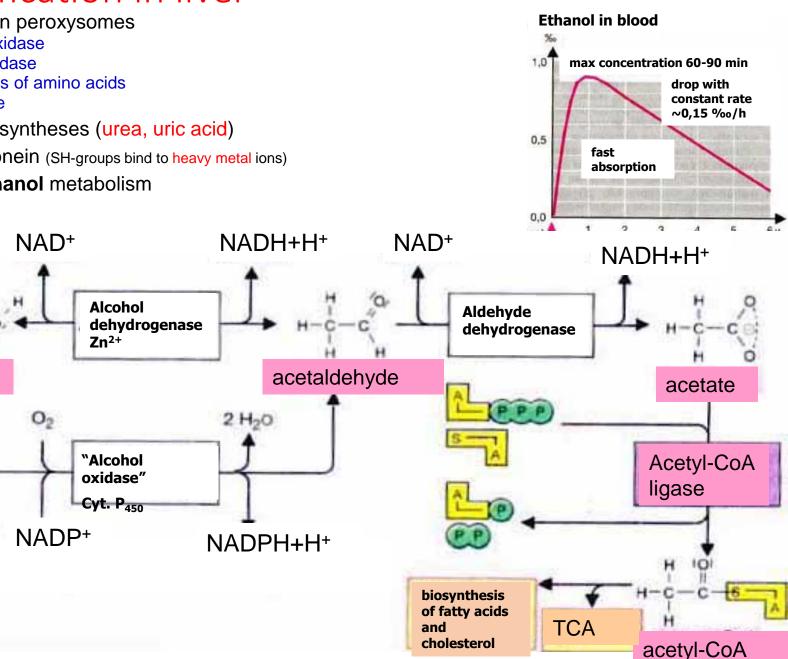
NADP++H^{*}
NADP^{*} FAD FADH₂ FMNH₂ Fe^{3*} (P₄₅₀)
$$O^{2^{-}} + 2H^{*} \rightarrow H_{2}O$$

NADP^{*} FADH₂ FMN Fe^{3*} (P₄₅₀) $O \rightarrow ROH$
RH
O₂

- system I: NADPH–cytochrome P₄₅₀ reductase + cytochrome P₄₅₀
- system II: NADH–cytochrome b₅ reductase
 - cytochrome b₅ can be a donor of electrons for
 - cytochrome P₄₅₀
 - stearoyl-CoA-desaturase
- Functioning of the systems:
 - formation of oxygen to singlet oxygen:
 - $O_2 + 2e^- \rightarrow O^{2-} + 0$
 - $O^{2-}+2H^+ \rightarrow H_2O$
 - O + RH → ROH
 - Result:
 - rise of hydrophilic properties,
 - increase of solubility
 - loss of biological activity of lipophilic compound RH.
 - In some cases
 - · formation of new biologically active compound,
 - increase of toxicity (reactions of lethal synthesis; benz(a)pyrene)

- Conjugation
 - transferases (formation of paired molecules)
 - UDP-glucuronosyltransferases glucuronic acid (active form – UDP-glucuronate) – in ER
 - bilirubin
 - products of conversion of amino acids in the intestine (phenol, cresol)
 - xenobiotics, drugs
 - sulfotransferases
 - sulfate (active form PAPS)
 - phenols
 - alcohols
 - amino acids
 - indole (indoxyl-3-sulphate indican)
 - acetyltransferase
 - acetate (active form acetyl-CoA)
 - sulfonamides
 - methyltransferases
 - methyl (active form SAM)
 - methylation of P=O, NH₂, SH-groups
 - vitamin PP (formation of N-methylnikotinamide)

- Conjugation
 - transferases
 - glutathione transferases in cytosol


GSH

- steroids
- prostaglandins
- bile acids
- · products of lipid peroxidation
- Action of glutathione transferases: 3 ways
 - Conjugation
 R+GSH → GSRH
 - Nucleophilic substitution $RX + GSH \rightarrow GSR + HX$ (formation of thioesters)
 - reduction of hydroperoxides R–HCOOH + GSH → R–HC–OH + GSSG + H_2O
 - for action of glutathione transferases a hydrophobic part in the moiety of substrate must present
 - detoxification of xenobiotics is possible by:
 - hydrophobic interactions
 - covalent binding to glutathione transferase.
- Glycine transferase
 - bile acids
 - benzoic acid
 - Quick's test : 4,5 g Na-benzoate, in 4 h not less than 70% of benzoate must be excreted
- epoxide hydrolases
 - formation of diols

- Oxidation in peroxysomes
 - urate oxidase
 - lactooxidase ٠
 - · oxidases of amino acids
 - catalase

ethanol

- Protective syntheses (urea, uric acid)
- metallothionein (SH-groups bind to heavy metal ions)
- · Role in ethanol metabolism

Pigment metabolism

- Degradation of RBC in **Mononuclear phagocyte** (reticuloendothelial) **system**
 - endocytosis, breaking up globin by lysosomal proteases
 - heme oxygenase (in EPR) is induced by heme
 - splitting between rings I and II (containing vinyl groups)

heme \rightarrow (verdoglobin) \rightarrow biliverdin (yellow) + Fe³⁺, NADP⁺

• biliverdin reductase:

biliverdin → bilirubin (35 mg from 1 g Hb, 250–350 mg/day)

- Bilirubin transport: bound to albumin
 - 1 molecule of albumin up to 3 molecules of bilirubin
- In acidosis
 - binding capacity of albumin decreases
 - bilirubin binds to collagen and membrane lipids
- Bilirubin competes with drugs/xenobiotics for binding sites on albumin
- uptake of albumin-bilirubin complex by hepatocyte membranes,
 - facilitated diffusion of bilirubin into hepatocytes:
 - glutathione-S-transferase (ligandin) main carrier
 - protein Z

Pigment metabolism

- Conjugation of bilirubin in smooth EPR → diglucuronid diglucuronid is water-soluble (direct bilirubin)
 - Secreted into bile against concentration gradient
- inductor of synthesis od UDP-glucuronosyltransferase and activator of transport of direct bilirubin into bile – barbiturates
- Inhibitors of bilirubin conjugation free fatty acids, estrogens

In intestine:

β-glucuronidases release bilirubin

bilirubin \rightarrow mesobilinogen \rightarrow urobilinogens (colorless tetrapyrrols) \rightarrow stercobilinogen

- absorption in large intestine (main part 250 mg/day)
- excretion with feces \rightarrow urobilin (stercobilin)
- urobilin formed by microflora
- excretion with urine of urobilinogen absorbed to inferior vena cava up to 4 mg/day
- **breakup** of the rest of urobilinogen absorbed into **portal vein** in liver to di- and tripyrrols and their excretion with urine.
 - small amount of urobilinogen is sectered to bile

Hyperbilibubinemias

- conjugated
- non-conjugated
- with covalent bond between bilirubin-glucuronid and albumin (delta-bilirubin) (prolonged conjugated hyperbilirubinemia) – hepatocellular failure
- Jaundice: when bilirubin concentration exceeds 50 mcM (diffusion of bilirubin into tissues)
- Encephalopathy (Kernicterus): with unconjugated bilirubin only (>340 mcM)
- Bilirubin in urine: only conjugated
- Inpaired conjugation (neonatal jaundice):
 - deficiency of transport proteins
 - Decreased uptake of indirect bilirubin
 - deficiency of UDP-glucuronosyltransferase
 - insufficient synthesis of UDP-glucuronate
 - family hyperbilirubinemia of infants presence of free fatty acids and estrogens in breast milk
 - disorders of active transport of direct bilirubin
 - In blood and urine increased level of direct bilirubin

Impaired conjugation

Gilbert's syndrome

- decreased activity of the bilirubin UDP-glucuronosyltransferase, harmless
- Typically inherited, autosomal recessive

Crigler-Najjar syndrome

- Type I complete loss of activity of the bilirubin UDPglucuronosyltransferase, fatal
- Type II some activity of the **bilirubin UDP-glucuronosyltransferase** remains, large doses of phenobarbital may be effective

Toxic Hyperbilirubinemia

CCl₃, CCl₄, acetaminophen, Amanita pallida

Hemolytic (pre-hepatic) jaundice

- Increased formation of bilirubin (more than 3-4-fold): hemolysis
 - sepsis
 - radiation syndrome
 - deficient glucose-6-P-dehydrogenase of RBC
 - thalassemia
 - transfusion of incompatible blood
 - poisoning with hemolytic substances
- Increased formation of direct bilirubin and its excretion with bile
- Increased absorption of urobilinogen and stercobilinogen, their level in blood and urine (direct bilirubin is absent in urine)
- Main symptom increased indirect bilirubin in the blood
- Toxicity of indirect bilirubin:
 - uncouples electron transport and oxidative phosphorylation,
 - inhibits protein synthesis,
 - decreased permeability of K⁺-channels.
- Kernicterus bilirubin encephalopathy.

Hepatic (hepatocellular) jaundice

- damage of hepatocytes and bile capillaries
 - retention of bilirubin in the liver,
 - disturbance of active transport of direct bilirubin into the bile
 - Formation of large amount of monoglucuronids
- direct bilirubin comes to blood, decreased levels of bilirubin and urobilinogen in the intestine
- In urine: more direct bilirubin, **urobilinogen** (not detoxified by liver)
 - High direct bilirubin: cholestatic hepatitis
 - Low urobilinogen: cholestatic hepatitis
- In blood: increased levels of both direct and indirect bilirubin

Post-Hepatic / cholestatic (mechanical) jaundice

- obstruction
- compression, stenosis
- birth defects
- Rate-limiting stage in the metabolism of bilirubin excretion of direct bilirubin with bile
- in blood the level of direct bilirubin increases
- in the intestine no bilirubin & urobilinogen
- disruption of enterohepatic recirculation
- in the urine high content of direct bilirubin
 Micro-obstruction: by damaged hepatocytes, oedema
 Dubin-Johnson syndrome

Mutation of gene of **direct bilirubin transporter**

Biochemical diagnosis of liver diseases

Fatty infiltration of liver

- TAG content in the liver over 2%
 - Disturbed synthesis of phospholipids lack of lipotropic factors (methionine and choline)
- occurred in
 - chronic intoxications (alcohol),
 - poisoning by phosphoro-organic substances, xenobiotics, some drugs,
 - lack of carbohydrates, diabetes mellitus
 - insufficient protein synthesis in liver

Liver failure

- State of the patients is most affected by decrease of
 - detoxification in liver (high ammonia, bilirubin)
 - protein synthesis (coagulopathies)
 - release of the intermediates of metabolism into blood, intoxication by these substances (influence on the CNS – hepatic encephalopathy)
- Ratio A/G
 - Decrease lower albumin content
- Colloid resistance tests
 - Positive in hepatic jaundice
 - Negative in post-hepatic jaundice
- Fractions of residual nitrogen (urea nitrogen must comprise = 50%)
- Increased activity of hepatic enzymes: F-1-P-aldolase, AIAT, LDH₅, sorbitol dehydrogenase
 - Cholestasis: alkaline phosphatase, leucine aminopeptidase, gamma-glutamyl transpeptidase
 - Severe hepatocellular insufficiency: increased: GDH, mitochondrial AsAT
- Decreased: cholinesterase, LCAT