# **Nucleic Acids**

Dr. Natalia Petushok

Department of Biological Chemistry Grodno State Medical University

# were isolated from the nucleus by F.Meicher in 1869









# J.Watson F.Crick discovery of the structure of DNA



### Arthur Kornberg and colleagues



purification and characterization of DNA polymerase from *E. Coli* cells, a enzyme now called **DNA polymerase I** 





#### F.Jacob J.Monod

#### the operon model of gene regulation









Marshall Nirenberg Severo Ochoa Gobind Khorana

# **Genetic Code**

#### **1972-1973**







#### Herbert Boyer Stanley N. Cohen Paul Berg

# **DNA cloning**

### 1990-2003

- The Human Genome Project (HGP) international effort to discover all the estimated 20,000-25,000 human genes and make them accessible for further biological study.
- Another project goal was to determine the complete sequence of the 3 billion DNA subunits.
- As part of the HGP, parallel studies were carried out on selected model organisms such as the bacterium *E. coli* and the mouse to help develop the technology and interpret human gene function.

### **Nucleic acids**

# are polymers of <u>nucleotides</u>, joined together by phosphodiester linkages between the 5-hydroxyl group of one pentose and

the 3-hydroxyl group of the next

#### or

NA are a long polymers made from repeating units called nucleotides



- a pentose sugar,
- and one or more phosphate groups.

(nucleotide = base + pentose + phosphate) (nucleoside = base + pentose)





(b) Ribonucleotides

#### **Chemical Composition of nucleic acids**

### <u>DNA</u>

Adenine, guanine, cytosine, thymine

### <u>RNA</u>

### Adenine,guanine, cytosine, <u>uracil</u>

### **Deoxyribose**

### Phosphoric acid

**Phosphoric acid** 

Ribose

### **Differences between RNA and DNA**

|           | RNA                     | DNA                    |
|-----------|-------------------------|------------------------|
| Content   | Ribose                  | Deoxyribose            |
|           | Adenine                 | Adenine                |
|           | Gyanine                 | Gyanine                |
|           | Cytosine                | Cytosine               |
|           | Uracil                  | Thymine                |
| Location  | Cytoplasm               | Nucleus                |
| Structure | Irregular               | Regular                |
| Function  | Transfer of information | Storage of information |

Nucleotides of both DNA and RNA are covalently linked through phosphate-group "bridges," in which the 5'phosphate group of one nucleotide unit is joined to the 3'hydroxyl group of the next nucleotide, creating a phosphodiester linkage



A strand of NA has a direction

### **<u>5'</u> (five prime)**

(three prime)

3'

## DNA

### contain and store the genetic information



- it is source of information for the synthesis of all proteins of the cell and organism
- provides the information inherited by daughter cell

Erwin Chargaff and his colleagues found that the in *all* cellular DNAs, the number of adenosine residues is equal to the number of thymidine residues:

$$A = T$$

and the number of guanosine residues is equal to the number of cytidine residues:

**G** = **C** 

The sum of the purine residues equals the sum of the pyrimidine residues:

 $\mathbf{A} + \mathbf{G} = \mathbf{T} + \mathbf{C}.$ 

These quantitative relationships, sometimes called "Chargaff's rules," were a key to establishing the 3D structure of DNA

# In 1953 Watson and Crick postulated a 3D model of DNA structure.

It consists of two antiparallel chains in a righthanded double-helical arrangement.

# Complementary base pairs (A-T and G-C) are formed by hydrogen bonding within the helix



The base pairs are stacked perpendicular to the long axis of the double helix,

- with a radius of 1 nm,
- distance spanned by one complete turn - 3.4 nm
- 1 turn of the double helix include 10 base pairs





# The DNA double helix is stabilized primarily by two forces:

- 1. hydrogen bonds between nucleotides
- 2. base-stacking interactions among the aromatic nucleobases



#### (a) Double helix

(b) Antiparallel orientation of strands

© 2012 Pearson Education, Inc.

# **Chromatin** is the combination of DNA and proteins that make up the contents of the nucleus of a cell.

The functions of chromatin are:

 to package DNA into a smaller volume to fit in the cell,

to strengthen the DNA to allow mitosis,

to prevent DNA damage,

to control gene expression and DNA replication.

# The primary protein components of chromatin are histones that compact the DNA.

### Chromatin is only found in eukaryotic cells.

# There are four levels of chromatin organization:

### DNA wraps around histone proteins forming nucleosomes (the "beads on a string")















# This fibril is supercoiled and form 30-nm chromatine fiber

### Chromatine (2)

### **Chromatine (2)**





### The 30-nm fiber must be compacted in length another 100-fold

It forms condensed and noncondensed loops anchored in supporting matrix

### **Chromatine (3)**







### **Chromatine (4)**





#### Metaphase chromosome





### Messenger RNA (mRNA)



 messenger conveying the informatiom from the gene to the protein synthesizing machinery

 serves as a template for protein synthesis

### mRNA

- 5' terminal is "capped" by a
  - 7-methilguanosine triphosphate
- 3'-hydroxil terminal has an attached polymer of 20-250 adenilate residues





- transfers a specific amino acid to a growing polypeptide chain at the ribosomal site of protein synthesis during translation.
- serve as adapter for the translation of the information in the sequence of nucleotides of the mRNA into specific aminoacids



### tRNA

- length from 74 to 95 nucleotides
- the primary structure of all tRNA allows extensive folding and intrastrand complementarity to generate a secondary structure like a clover leaf



It has sites for amino acid attachment and an anticodon region for codon recognition that binds to a specific sequence on the mRNA





### rRNA

• is the structural and catalytic component of the ribosomes.





### **Biosynthesis of purine nucleotides**



Inosine monophosphate

1

### Origin of atoms in purine ring





# Regulation of purine synthesis

