METABOLISM OF GLYCOGEN

REGULATION OF CARBOHYDRATE METABOLISM

Lecture III

Pyruvate metabolism

Glucose convert to pyruvate in same way but the fate of pyruvate varies depending on conditions and species

Scheme of pyruvate metabolism

Formation of Pyruvic Acid in the Body

- From oxidation of glucose (Glycolysis)
- From lactic acid by oxidation
- Deamination of Alanine
- Decarboxylation of oxaloacetic acid
- From malic acid by *malic enzyme*

Fate of Pyruvic Acid

- Forms acetyl-CoA by oxidative decarboxylation (in presence of O₂)
- Forms lactic acid by reduction (in absence of O₂)
- Forms alanine by amination
- Forms glucose (gluconeogenesis)
- Forms oxaloacetic acid by CO₂-fixation reaction

Fate of pyruvic acid depends on the redox state of the tissues

Metabolism of Glycogen

Glycogen structure

- Large molecule
- Branch points are frequent (about every fourth residue) – allows glucose residues to be easily added or removed quicker than a linear molecule.

Glucose residues linked by α (1-4) glycosidic bonds into chains & chains branch via α (1-6) linkage

Metabolism of Glycogen

Glycogen is the major storage carbohydrate in animals.

It is a branched polymer of α -D-glucose.

It occurs mainly in liver and muscle.

Muscle glycogen provides a readily available sours of glucose for glycolysis whithin the muscle itself.

!!!

Muscle glycogen cannot directly contribute to blood glucose level.

Muscle glycogen

Provides available source of glucose while exercising in order to support anaerobic & aerobic conversion within muscle cells.

Muscle cells **do not** contain enzyme glucose 6-phosphatase, which allow the release of glucose into the blood.

Liver glycogen functions: to store and export glucose to maintain blood glucose between meals.

- Short term energy source for an organism, which provides a means to
- store and release glucose in response to blood glucose levels.
- The liver does not use this glucose for it's own energy.

Glycogen biosynthesis (or glycogenesis)

• Occurs in muscle and liver

- Involves a special nucleotide of glucose
- uridine diphosphate glucose (UDPGlc)

By the action of the enzyme glycogen synthase,

C-1 of the activated glucose (UDP-Glc) forms a glycosidic bond with the C-4 of a terminal glucose residue of pre-existing glycogen molecule, or "primer". Primer must be present to initiate this reaction.

The glycogen "primer" is formed on a protein primer known as glycogenin.

Glycogenin

The initiation of glycogen synthesis involves a protein "primer" which was first proposed in 1975 and later identified as a protein named glycogenin.

Mechanism of branching:

Harper's Illustrated Biochemistry

Mechanism of branching

When the chain has been lengthened to minimum of 11 glucose residues, a branching enzyme (amylo-1, $4 \rightarrow \alpha 1$, 6-transglucosidase) transfers a part of $1 \rightarrow 4$ chain, minimum length 6 glucose residues, to a neighbouring chain to form $\alpha 1 \rightarrow 6$ linkage. The branches grow by further additions of $1 \rightarrow 4$ glucosyl units and further branching.

GLYCOGENOLYSIS (mobilisation of glycogen) Breakdown of glycogen to glucose It is initiated by the action of a specific enzyme *phosphorylase*, which breaks $\alpha 1 \rightarrow 4$ linkage to yield glucose-1-phosphate.

Phosphorylase step is the first step which is the *rate-limiting and key enzyme in glycogenolysis*

Mechanism of debranching

- Debranching enzyme
 - glucan transferase (transglycosylase activity)
 - -1,6-glucosidase activity

Harper's Illustrated Biochemistry

Mechanism of debranching

When four glucose residues are left from the branch point, α -1, $4 \rightarrow \alpha$ -1, 4 glucan transferase *transfers a trisaccharide unit from one* side to the other thus exposing α $1 \rightarrow 6$ branch point.

The splitting of α -1 \rightarrow 6 glucosidic linkage requires the action of *amylo-1* \rightarrow 6-*glucosidase.*

In this reaction one molecule of free glucose is produced.

Mechanism of debranching

Glycogen srorage deseases

Group of inherited disorders characterized by deficient mobilisation of glycogen or deposition of abnormal forms of glycogen, leading to muscle weakness

some glycogen storage diseases result in early death

Glycogen srorage deseases

- Von Gierke desease deficiency of Glucose-6phosphatase
- Pompe disease deficiency of α 1 → 4 and α 1 → 6 glucosidase (acid maltase)
- Forbe (or Cori) desease deficiency of debranching enzyme
- Andersen desease deficiency of branching enzyme
- Hers desease deficiency of liver phosphorylase

Normal skeletal muscle

Glycogen aggregates in Pompe disease

Gierke desease

Forbe (or Cori) desease

Pictures 7A and 7B - Glycogen storage disease type III

GSD Type 0

- An inherited genetic disease
- · Enzyme affected: glycogen synthase
- The body is unable to store glycogen
- LIVER: Chromosome 12
- -hypoglycemia when fasting
- -hyperglycemia right after meals
- MUSCLE: Chromosome 19

-frequent fatigue and muscle cramps

Harper's Illustrated Biochemistry

Uronic acid pathway

It is an alternate pathway for oxidation of glucose

Convertion of glucose to glucuronic acid

UDP-glucoronate is the source of glucuronate

for proteoglycans synthesis

 for reactions with substrates such as steroid hormones, bilirubin and a number of foreign compounds (xenobiotics) that are excreted in urine or bile as a glucuronide conjugates

Harper's Illustrated Biochemistry

Signs & Symptoms

Here's what may happen when your blood sugar is high:

Very thirsty

Needing to pass urine more often than usual

Dry skin

Very hungry

Sleepy

Blurry vision

Infections or in heal more slo than usua

What goes wrong when the concentration decreases?

Hypoglycaemia

- The symptoms associated with low blood sugar are:
 - tiredness, confusion, dizziness, headaches, mood swings, muscle weakness, tremors, <u>irreversible CNS</u> <u>damage, coma, death</u>

Regulation of Glucose Concentration in the Blood

Insulin:

- transport of glucose to the cell
- glycogen synthesis
- -glycolysis
- glyconeogenesis

Insulin promotes glucose uptake by increasing the surface exposure of GLUT 4 transporters

Diabetes mellitus

A chronic disease due primarily to a disorder of carbohydrate metabolism, cause of which is

deficiency or diminished effectiveness of insulin,

resulting in hyperglycaemia and glycosuria. Secondary changes may occur in the metabolism of proteins, fats, water and electrolytes and in tissues/organs sometimes with grave consequences.

Two clinical types:

- Type-I Insulin dependent—IDDM typically observed in the young. It arises from an immunological cross-reaction that destroys the insulin-producing β-cells of the pancreatic islets which causes a lack of insulin.
- Type-II— Non-Insulin Dependent NIDDM typically observed in the elderly. Type 2 diabetics may secrete normal insulin. The hormone also binds to its receptors on the cells in the body, which however fail to respond adequately to this stimulus (lacking functional response).

Types of diabetes

CLINICAL FEATURES

- Large amounts of glucose may be excreted in urine (glucoseuria)
- Loss of solute produces osmotic diuresis thus large volume of urine (polyuria).
- Loss of fluid leads to thirst and polydypsia.
- Polyphagia: eats more frequently.
- Tissues cannot use glucose due to absolute or relative deficiency of insulin/ or transport defect to cells. This causes weakness and tiredness.

CLINICAL FEATURES

- As glucose cannot be used for fuel, fat is mobilized leading to increase FFA in blood.
- Increased acetyl-CoA is diverted for cholesterol synthesis - hypercholesterolaemia and atherosclerosis. Xanthomas may develop.
- Increased ketone bodies leads to acidosis.If ketosis is severe, acetone will be breathed out, giving characteristic "fruity" smell in breath (due to acetone).

CLINICAL FEATURES

- Excessive breakdown of tissue proteins.
 Deaminated amino acids are catabolised to provide energy, which accounts for loss of weight.
- Continued loss of water and electrolytes increases **dehydration**.
- Ketoacidosis produces increasing drowsiness, leading to diabetic coma in untreated cases.

Diabetes mellitus

Long-term complications of diabetes

Biochemical deviation	Clinical manifestation
accumulation of sorbitol in the lens of the eye	cataract
increased conversion of glucose to lipids	increased blood fats, atherosclerosis
glucosylation of proteins sorbitol accumulation	damage to nerve fibres, kidneys, other organs

Factors Causing

