
ФЕРМЕНТЫ-2

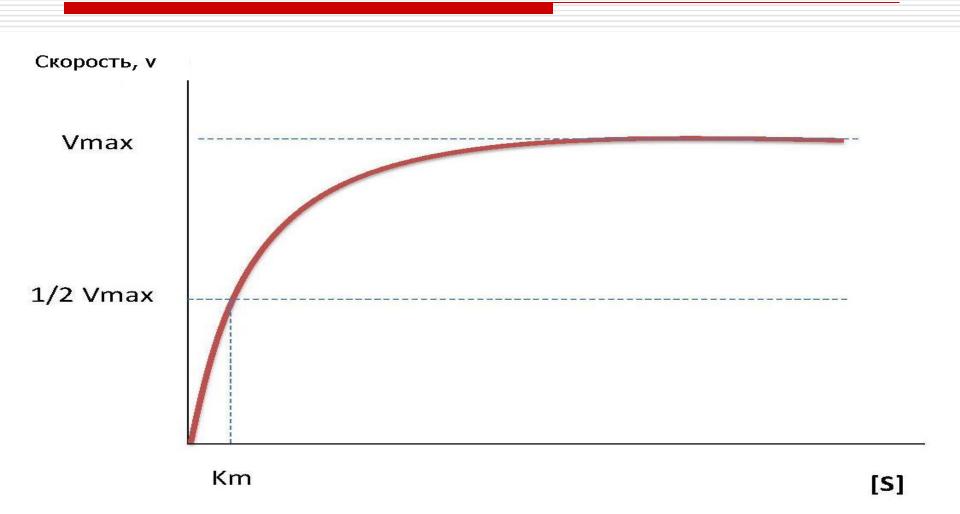
Зав. кафедрой биохимии профессор ЛЕЛЕВИЧ В.В.

Ферментативная кинетика -

занимается исследованием закономерностей влияния химической природы реагирующих веществ (фермента, субстрата) и условий их взаимодействия (концентрация, рН, температура, присутствие активаторов или ингибиторов и др.) на скорость ферментативных реакций.

Главной целью изучения кинетики ферментативных реакций является получение информации, которая может способствовать пониманию механизма действия фермента.

Уравнение Михаэлиса-Ментен

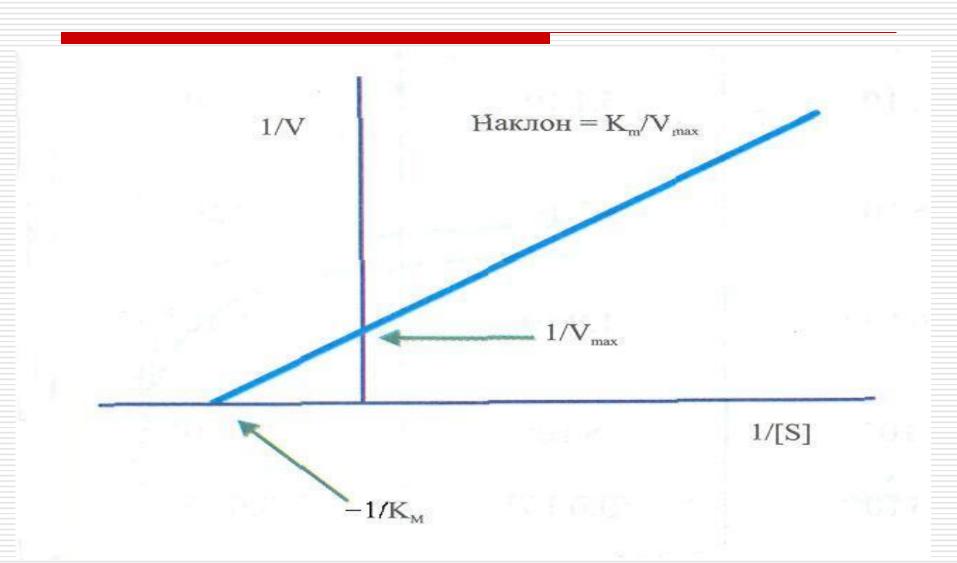

Км – константа Михаэлиса

Км численно равна концентрации субстрата (моль · л) при которой скорость данной ферментативной реакции составляет половину максимальной. Для большинства ферментов значения Км лежат в пределах 10⁻² – 10⁻⁵ М.

Уравнение Михаэлиса-Ментен

Уравнение Михаэлиса-Ментен было выведено исходя из предложения о том, что лимитирующей стадией ферментативной реакции является распад комплекса [ES] на продукт и свободный фермент.

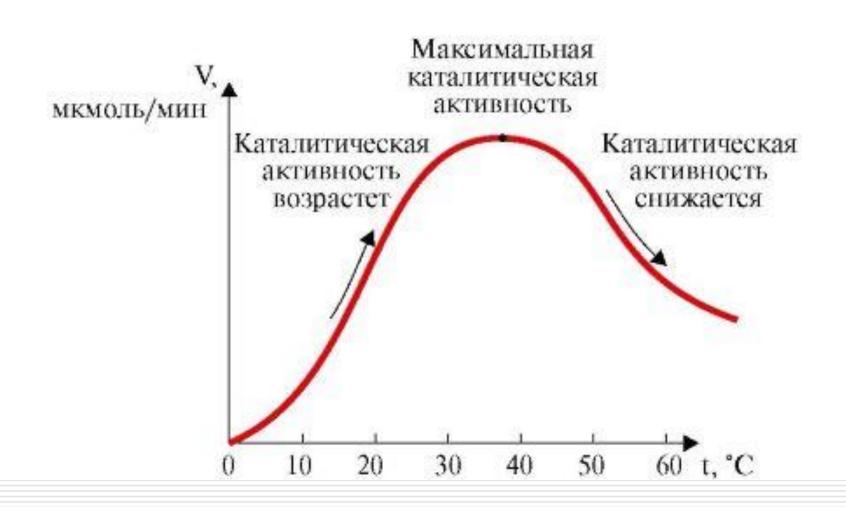
Уравнение Михаэлиса-Ментен



Уравнение Лайнуивера Бэрка

Уравнение Лайнуивера-Бэрка получили в результате преобразования уравнения Михаэлиса-Ментен по методу двойных обратных величин. При пользовании графиком Михаэлиса-Ментен Vmax является а с и м п т о т и ч е с к о й величиной и определяется недостаточно точно.

Уравнение Лайнуивера Бэрка

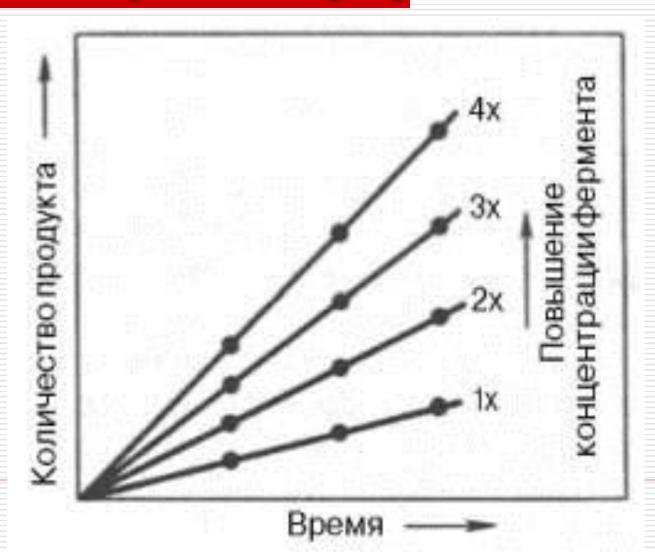


Факторы, влияющие на скорость ферментативных реакций:

- 1. Температура
- рН среды
- 3. Концентрация субстрата (уравнение Михаэлиса-Ментен)
- 4. Концентрация фермента
- 5. Концентрация продуктов реакции
- 6. Действие регуляторов (активаторы и ингибиторы)

alkaline

Зависимость скорости ферментативной реакции от температуры


Зависимость скорости ферментативной реакции от рН среды

рН оптимум некоторых ферментов

Фермент	Оптимальное значение рН
Пепсин	1,5-2,0
Пируваткарбоксилаза	4,8
Уреаза	6,8-7,2
Трипсин	6,5-7,5
Аргиназа	9,5-9,9

Зависимость скорости ферментативной реакции от концентрации фермента

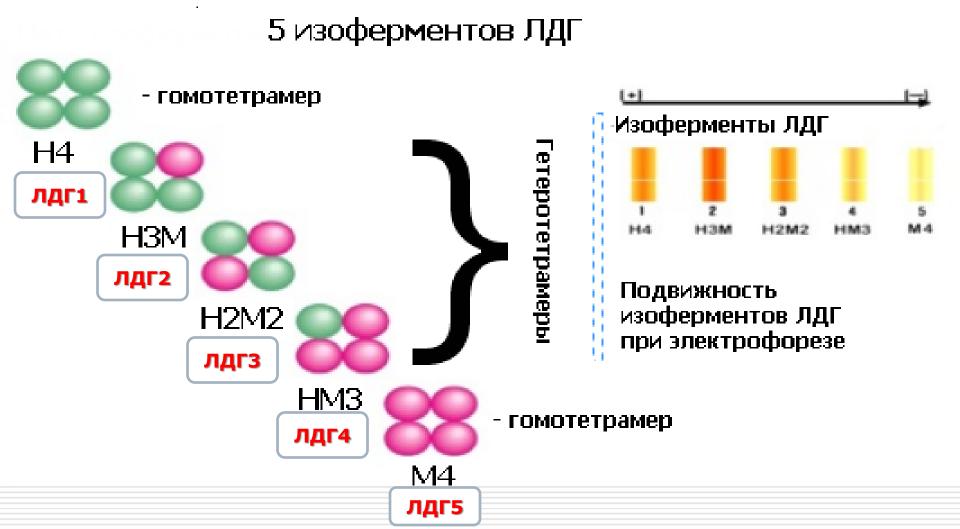
Специфичность действия ферментов


- Ферменты обладают более
 высокой специфичностью
 действия по сравнению с
 неорганическими катализаторами.
- □ Специфичность по отношению к субстрату – это предпочтительность фермента к субстрату определенной структуры.

Специфичность действия ферментов

Различают 4 вида субстратной специфичности:

- Абсолютная глюкокиназа аргиназа уреаза
- Относительная липаза
- □ Относительная групповая пепсин химотрипсин трипсин
- □ Стереохимическая аспартатдекарбоксилаза действует только на L-аспартат


ИЗОФЕРМЕНТЫ –

это ферменты, катализирующие одну и ту же химическую реакцию, но отличающиеся по первичной структуре белка, физико-химическим и каталитическим свойствам.

- □ ЛДГ1 НННН ЛДГ2 НННМ ЛДГ3 – ННММ ЛДГ4 – НМММ ЛДГ5 – ММММ
- □ ЛДГ1 и ЛДГ2: миокард, почки
- □ ЛДГ4 и ЛДГ5: скелетные мышцы, печень

Пример изоферментов:

Благодаря изоферментам достигается:

- □ Особенности метаболизма в различных органах
- □ Специализация метаболизма внутри клеток (цитоплазма, митохондрии, лизосомы)
- Дифференцировка и развитие тканей в онтогенезе
- Тонкая регуляция метаболизма

ЕДИНИЦЫ ФЕРМЕНТАТИВНОЙ АКТИВНОСТИ

Международная единица — это то количество фермента, которое в оптимальных условиях катализирует превращение 1 мкмоля субстрата за 1 минуту.

□ КАТАЛ – это то количество фермента, которое в оптимальных условиях катализирует превращение 1 моля субстрата за 1 секунду.

1 катал = $6 \cdot 10^7$ МЕ

- □ Удельная активность равна числу МЕ ферментативной активности на 1 мг активного белка (или числу каталов на 1 кг активного белка).
- Молекулярная активность − равна числу молекул субстрата, подвергающихся превращению 1 молекулой фермента за 1 минуту.

Способы регуляции активности ферментов

- 1. Изменение количества фермента
- 2. Изменение каталитической эффективности фермента
- 3. Изменение условий протекания реакции

РЕГУЛЯЦИЯ КОЛИЧЕСТВА ФЕРМЕНТОВ

Конститутивные ферменты – являются обязательными компонентами клетки, синтезируются с постоянной скоростью в постоянных количествах.

Адаптивные ферменты – их образование зависит от определенных условий. Среди них выделяют индуцируемые и репрессируемые ферменты.

РЕГУЛЯЦИЯ КОЛИЧЕСТВА ФЕРМЕНТОВ

Индуцируемые – ферменты с катаболической функцией. Их образование может быть вызвано или ускорено субстратом данного фермента.

Репрессируемые – ферменты анаболической направленности. Ингибиторами их синтеза может быть конечный продукт данной реакции.

ИЗМЕНЕНИЕ КАТАЛИТИЧЕСКОЙ ЭФФЕКТИВНОСТИ ФЕРМЕНТОВ

Активаторы могут повышать активность ферментов посредством разных механизмов:

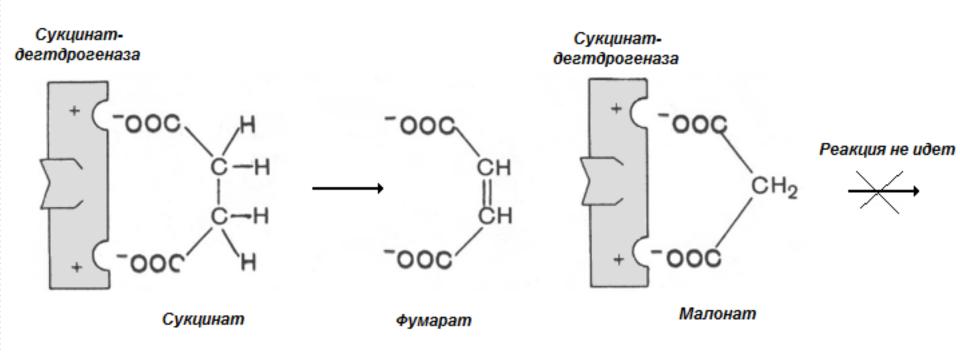
- формируют активный центр фермента
- облегчают образование [ES] комплекса
- стабилизируют нативную структуру фермента
- защищают функциональные группы активного центра

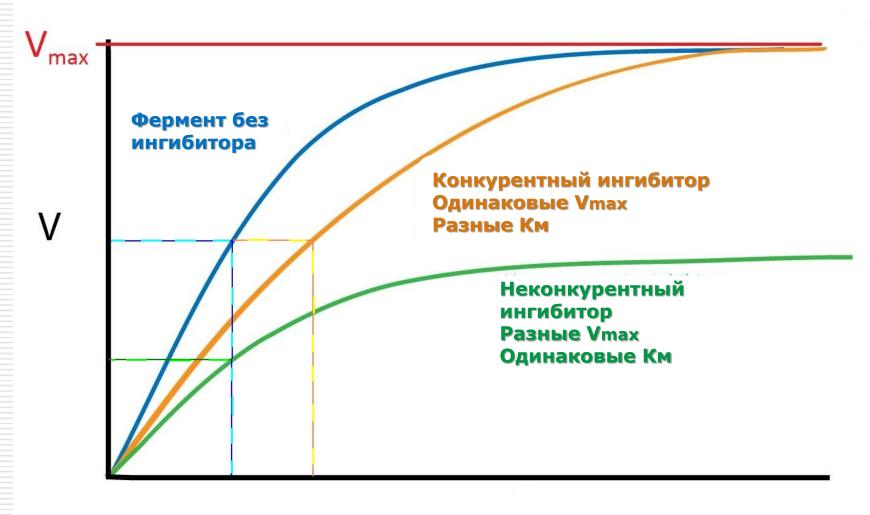
ТИПЫ ИНГИБИРОВАНИЯ ФЕРМЕНТОВ

□ Неспецифическое

- □ Специфическое:
- а) необратимое
- б) обратимое:
 - конкурентное
 - неконкурентное

Неспецифическое ингибирование


Все факторы, вызывающие денатурацию белков, в том числе белков-ферментов (t°, кислоты, щелочи, органические вещества и др.)


Необратимое ингибирование

- Все факторы, вызывающие необратимую денатурацию белков-ферментов.
- При образовании ковалентных стабильных связей между ингибитором и ферментом (ионы тяжелых металлов ртуть, серебро, мышьяк).
- □ Диизопропилфторфосфат (ДФФ) относится к специфическим необратимым ингибиторам «сериновых» ферментов специфически реагирует лишь с одним из многих остатков серина в активном центре фермента.

Пример конкурентного ингибирования

Конкурентное и неконкурентное ингибирование

S

ЛЕКАРСТВЕННЫЕ ПРЕПАРАТЫ – ИНГИБИТОРЫ ФЕРМЕНТОВ

I Необратимое ингибирование

Аспирин – ингибирует циклооксигеназу, катализирующую образование простагландинов из арахидоновой кислоты.

II Конкурентное ингибирование

Ингибиторы холинэстеразы (Холинэстераза вызывает гидролиз ацетилхолина на холин и уксусную кислоту):

- Прозерин
- Эндрофоний

III Антиметаболиты

- Сульфаниламиды
- 6-меркаптопурин
- 5-фторурацил

