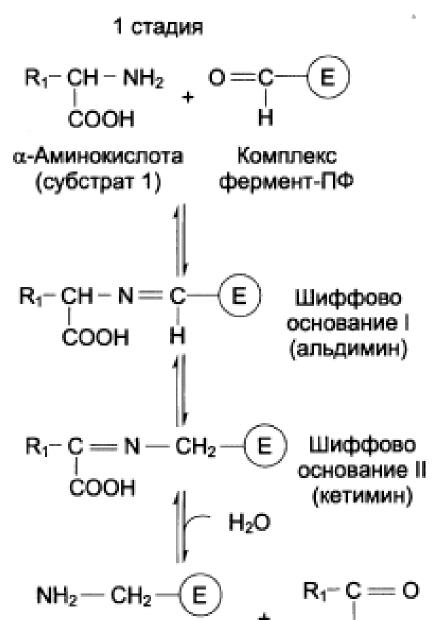
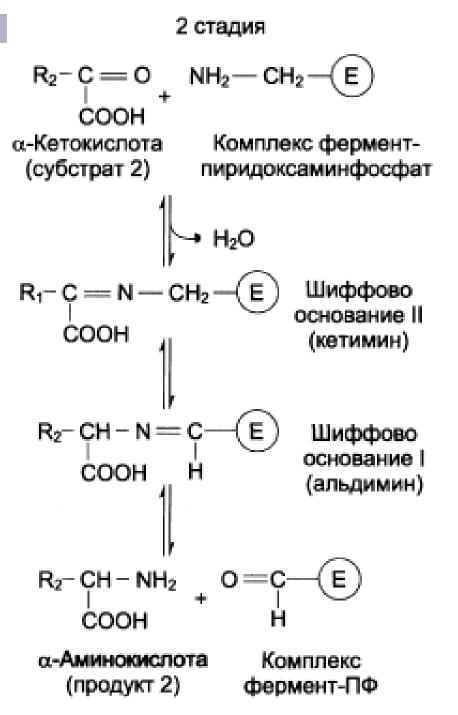

Обмен аминокислот - II



Зав. кафедрой биохимии профессор В.В. Лелевич

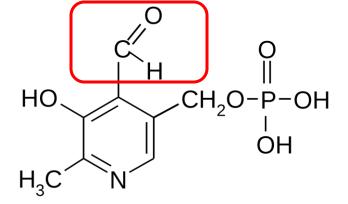
Трансаминирование — реакции переноса α-аминогруппы аминокислоты на α-кетокислоту без промежуточного образования аммиака.

Механизм трансамини-рования



Комплекс ферментпиридоксаминфосфат

α-Кетокислота (продукт 1)


COOH

Механизм трансамини-рования

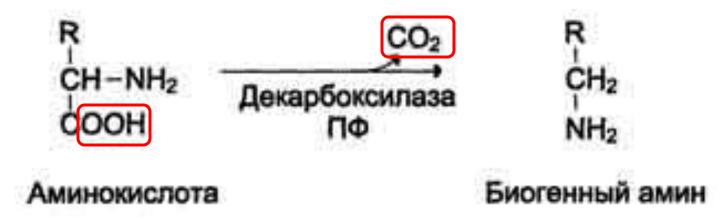
□ПАЛФ – пиридоксальфосфат (производное

витамина B_6).

- Реакции трансаминирования <u>обратимы</u>, протекают в цитоплазме и митохондриях.
- □ В клетках человека функционирует более 10 аминотрансфераз, отличающихся по субстратной специфичности.
- □ В реакции трансаминирования могут вступать большинство аминокислот за исключением лизина, треонина и пролина.

- □ Так как этот процесс обратим, то он участвует как в процессе катаболизма, так и биосинтеза аминокислот.
- □ Трансаминирование заключительный этап синтеза заменимых АК из соответствующих кетокислот.
- □ Трансаминирование первая стадия дезаминирования большинства АК, т.е. начальный этап их катаболизма. Образующиеся при этом кетокислоты окисляются в ЦТК или используются для синтеза глюкозы или кетоновых тел.
- □ При трансаминировании общее количество АК в клетке *не меняется*.

- □ В клинике широко используют определение активности **АСТ** и **АЛТ** в сыворотке крови для диагностики некоторых заболеваний.
- □ АЛТ наибольшая ее активность обнаружена в печени, а затем по убывающей в поджелудочной железе, сердце, скелетных мышцах.

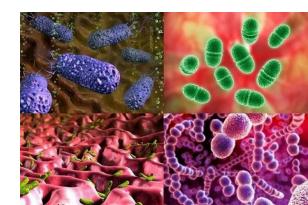


- □ АСТ наибольшая активность обнаружена в миокарде, затем в порядке убывания в печени, скелетных мышцах, головном мозге, почках. Активность АСТ в миокарде в 10 000 раз выше, чем в сыворотке крови.
- □ Коэффициент де Ритиса соотношение активностей АСТ/АЛТ. В норме этот коэффициент равен 1,33 ± 0,40. При инфаркте миокарда этот коэффициент резко возрастает, а при гепатитах снижается до 0,6.

- **Декарбоксилирование** аминокислот отщепление карбоксильной группы в виде CO_2 .
- □ Реакции декарбоксилирования являются <u>необратимыми</u>.
- □ Они катализируются декарбоксилазами аминокислот.
- □ Коферментом декарбоксилаз является пиридоксальфосфат, производное витамина В₆.

Различают 4 типа декарбоксилирования.

1. α – декарбоксилирование (характерно для животных тканей).


Биогенные амины могут выполнять функцию нейромедиаторов (серотонин, дофамин, ГАМК), гормонов (адреналин, норадреналин), регуляторов местного действия (гистамин, карнозин, спермин и др.)

2. **— декарбоксилирование** (свойственно микроорганизмам).

COOH-CH₂-CH-COOH
$$\rightarrow$$
 CH₃-CH-COOH + CO₂
NH₂ NH₂

Аспартат

Аланин

3. Декарбоксилирование, связанное с реакцией трансаминирования.

4. Декарбоксилирование, связанное с реакцией конденсации двух молекул

$$R_1$$
 R_2
 R_1
 $CH-NH_2 + CO-S-HoA \longrightarrow CH-NH_2 + SH-HoA + CO_2$
 $COOH$
 $CO-R_2$

Эта реакция происходит при синтезе аминолевулиновой кислоты из глицина и сукцинил-КоА, при синтезе сфинголипидов.

Реакции образования биогенных аминов

Триптофан → 5-окситриптофан → Серотонин

Триптофан → Триптамин

Тирозин → ДОФА → дофамин → норадреналин →

→ Адреналин

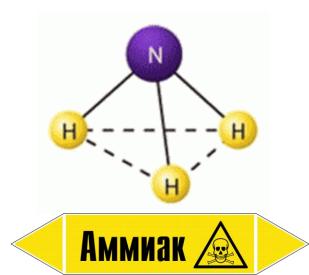
 Γ лутамат $\rightarrow \Gamma$ АМК

Гистидин → **Гистамин**

Образование биогенных аминов

СО
$$_2$$
СН $_2$ -СН-СООН
NH $_2$
Пистидин
СН $_2$ -СН-СООН
Н
Гистидин
СН $_2$ -СН $_2$ -СН $_2$ -NH $_2$
Н
Гистамин

Катаболизм биогенных аминов



- □ Моноаминооксидаза (МАО) ФАД-содержащий фермент, локализуется преимущественно в митохондриях.
- Играет очень важную роль в организме, регулируя скорость распада биогенных аминов.
- □ Ингибиторы МАО являются лекарственными препаратами:

Антидепрессанты: Ниаламид Пиразидол и др.

- 1. Дезаминирование аминокислот.
- 2. Дезаминирование биогенных аминов.
- 3. Дезаминирование нуклеотидов.

Основные источники аммиака

Источник	Процесс	Ферменты	Локализация процесса
Аминокислоты	Непрямое дезаминирование (основной путь дезаминирования аминокислот)	Аминотрансферазы, ПФ Глутаматдегидрогеназа, НАД+	Все ткани
	Окислительное дезаминирование глутамата	Глутаматдегидрогеназа, НАД+	Все ткани
	Неокислительное дезаминирование Гис, Сер, Тре	Гистидаза, серин-, треониндегидратазы, ПФ	Преимущественно печень
	Окислительное дезаминирование аминокислот (малозначительный путь дезаминирования аминокислот)	Оксидаза L-аминокислот, FMN	Печень и почки
Биогенные амины	Окислительное дезаминирование (путь инактивации биогенных аминов)	Аминооксидазы, FAD	Все ткани
АМФ	Гидролитическое дезаминирование	АМФ-дезаминаза	Интенсивно работающие мышцы

- □ Концентрация аммиака в крови в норме не превышает 50 мкМоль/л.
- Аммиак токсическое соединение. Накопление аммиака вызывает:
 - гипоэнергетическое состояние
 - угнетение реакций трансаминирования АК
 - алкалоз
 - судороги

Обезвреживание аммиака

1. Основной реакцией связывания аммиака, протекающей во всех тканях, является образование глутамина

глутаминсинтетаза Глутамат + NH_3 + $AT\Phi \longrightarrow$ глутамин + $AД\Phi$ + Φ н

2. Похожая реакция возможна и с аспарагиновой кислотой.

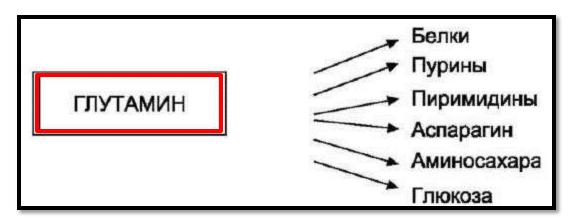
аспарагин-

Аспартат $+AT\Phi + NH_3$ (глутамин) $\xrightarrow{\text{синтетаза}}$ Аспарагин $+AM\Phi + \Phi\Phi H + (глутамат)$

Обезвреживание аммиака

3. Восстановительное аминирование

α-кетоглутарата (головной мозг и др. ткани).


$$\alpha$$
-КГК + NH_3 \longrightarrow Глутамат
НАДН $_2$ НАД+

Этот путь протекает слабо.

Обезвреживание аммиака

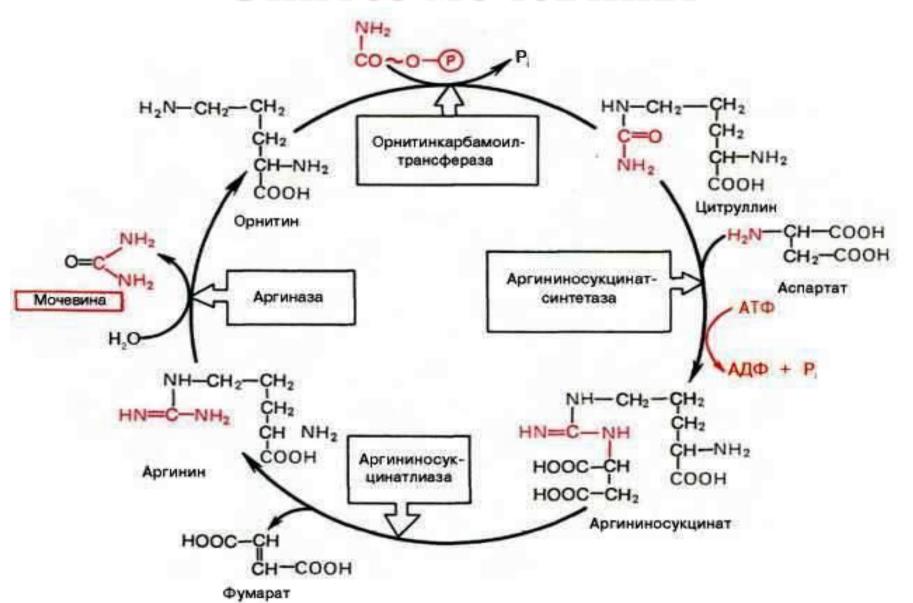
- □ Из мышц и кишечника избыток аммиака выводится в виде аланина.
- □ Мышцы выделяют особенно много аланина в силу их большей массы и интенсивного метаболизма при физической работе.
- □ Образовавшийся аланин поступает в печень, где дезаминируется. Выделевшийся аммиак обезвреживается, а пируват включается в глюконеогенез с образованием глюкозы (глюкозо-аланиновый цикл).

- Основными тканями, поставщиками глутамина, являются мышцы, головной мозг, печень.
- □ Глутамин используется во многих анаболических процессах.
- **Глутамин** основной донор азота в организме.

Пути использования глутамина в организме

Синтез мочевины (Орнитиновый цикл)

- Мочевина основной конечный продукт азотистого обмена у человека (85% всего азота выводится из организма с мочевиной).
- □ Экскреция мочевины в норме составляет 25 гр. в сутки.
- Мочевина в организме синтезируется только в печени.
- □ Поражение печени и нарушение синтеза мочевины приводят к повышению в крови и тканях аммиака и аминокислот (в первую очередь глутамина и аланина).


Синтез мочевины

- □ В 40-х годах 20 века немецкие биохимики Ганс Кребс и Курт Гензелейт установили, что синтез мочевины представляет собой циклический процесс.
- □ Он получил название «орнитиновый цикл» или «цикл Кребса Гензелейта».

Ганс Кребс 1900 - 1981

Синтез мочевины

Суммарное уравнение синтеза мочевины

$$CO_2 + NH_3 + аспартат + 3ATФ + $2H_2O = MO4$ мочевина + фумарат + $2(AДΦ + H_3PO_4)$ + $AMΦ + H_4P_2O_7$$$

- □ За каждый оборот орнитинового цикла расходуются 4 макроэргические связи 3 молекул АТФ.
- □ Однако превращение аминокислот имеет пути компенсации энергозатрат:
 - При включении фумарата в ЦТК на стадии дегидрирования малата образуется 1 НАДН(Н+) (ЗАТФ)
 - При окислительном дезаминировании глутамата образуется 1 **НАДН(H**⁺) (3 **АТФ**).

Полный набор ферментов орнитинового цикла есть только в печени.

Отдельные ферменты орнитинового цикла обнаружены и в других органах:

почки — аргининосукцинатсинтетаза аргининосукцинатлиаза

энтероциты – карбамоилфосфататсинтетаза

Происхождение атомов азота в мочевине

- один атом азота имеет своим источником свободный аммиак (через карбамоил фосфат)
- второй атом азота поступает из аспартата

- 1. Предотвращение накопления токсических продуктов, главным образом аммиака.
- 2. Синтез аргинина и пополнение его фонда в организме.
- □ Эффективность работы орнитинового цикла в нормальных условиях составляет 60% его мощности.

Запас мощности необходим для избежания гипераммониемии при изменениях количества белка в пище.

- длительной физической работе
- длительном голодании (распад тканевых белков)
- сахарном диабете
- паталогических состояниях, сопровождающихся интенсивным распадом тканевых белков

- □ Нарушение реакций обезвреживания аммиака приводит к повышению его содержания в крови гипераммониемии.
- □ Причинами гипераммониемии могут выступать как генетические дефекты ферментов орнитинового цикла в печени, так и вторичные поражения печени в результате цирроза, гепатита и других заболеваний.
- □ Известны 5 наследственных заболеваний, обусловленных дефектом 5 ферментов орнитинового цикла.

Заболевания	Фермент	Метаболиты	
		кровь	моча
Гипераммониемия І типа	Карбамоилфосфат- синтетаза	Глутамин Аланин NH ₃	Оротат
Гипераммониемия II типа	Орнитинкарбамоил- трансфераза	Глутамин Аланин NH ₃	Оротат
Цитруллинемия	Аргининосукцинат- синтетаза	Цитруллин NH ₃	Цитруллин
Аргининосукцинат- урия	Аргининосукцинат- лиаза	Аргинино- сукцинат NH ₃	Аргинино- сукцинат Глутамин Ала, Лиз
Гипераргиниемия	Аргиназа	Аргинин NH ₃	Аргинин Лизин Орнитин

- □ Все нарушения орнитинового цикла приводят к значительному повышению в крови концентрации аммиака, глутамина и аланина.
- □ Все симптомы гипераммониемии результат действия аммиака на ЦНС.
- □ Клинические симптомы гипераммониемии:
 - тошнота, повторяющаяся рвота
 - головокружение, судороги
 - потеря сознания
 - умственная отсталость
- □ Лечение гипераммониемии
 - малобелковая диета
 - введение в рацион кетоаналогов АК

Спасибо за внимание!

