Variant № 1

1. Find ionic equation of water.

A)
$$\frac{[\text{H}^+] \cdot [\text{OH}^-]}{[\text{H}_2\text{O}]} = 1.8 \cdot 10^{-16}$$

B)
$$[H_3O^+][OH^-] = 10^{-14}$$

C)
$$- \lg[H^+] \cdot [-\lg[OH^-] = 14$$

D)
$$pH + pOH = 14$$

2. The pOH value of blood varies in limits:

A)
$$7,36 - 7,40$$

B)
$$6.64 - 6.40$$

A)
$$7.36 - 7.40$$
 C) $10^{-7.36} - 10^{-7.40}$

D)
$$1 - 1.5$$
.

- 3. Buffer solutions, consisting of weak acid & its anion, usually have stable pH value equal to:
 - **A)** from 1 to 3

B) from 3 to 7

C) from 7 to 10

- **D)** from 10 to 14
- 4. The pH of the buffer consisting of the weak acid & its anion depends from:
 - **A)** the value of constancy of acidity
- **B)** the ratio of acid & salt concentrations
- C) the acid dissociations degrees
- **D)** the absolute concentrations of buffer components
- 5. Buffer capacity (**B**) is a property of buffer system:
 - A) to support the constancy of pH during buffers dilution
 - B) to contradict the pH change during the increase of buffers components concentrations
 - C) to contradict pH change during the addition of low quantities of acid or base
 - **D)** to support constancy of the pH, independently from the pOH value
- 6. Buffer capacity of acidic buffer formed by the weak acid increases during the:
 - A) combined increase of acids concentration & salts concentration decrease
 - B) combined decrease of acids concentration & salts concentration increase
 - C) decrease of acids concentration
 - **D)** increase of salt concentration
- 7. Buffer capacity of hydrocarbonate buffer by acid depends of:
 - A) NaHCO₃ concentration
- **B)** H₂CO₃ concentration
- C) the pH value of a buffer
- **D)** the quantity of added acid
- 8. Alkaline reserve of blood is developed:
 - A) by the partial pressure of free CO₂ in blood plasma
 - **B)** by the volume of CO₂ chemically fixed with hemoglobin in blood cells
 - C) by the volume of CO₂ chemically fixed with bicarbonate ion in blood plasma
 - **D)** by the volume of free CO_2 in the alveolar air
- 9. Alkaline reserve of blood normally equals:

A) to 50-70 % by volume

B) to 53,3 gPa

C) to 8-10 mmol/L

D) to 7,36-7,40

10. Acidic-basic equilibrium in blood cells is performed by buffer systems:

A) hydrocarbonate

B) acetate

C) phosphate

D) hemoglobin

- 11. Complex compounds are...
 - A) compounds of higher order got by the reactions of polymerization or polycondensation;
 - **B)** compounds of higher order got by the donor-acceptor mechanism:
 - C) compounds of lower order & in centers of its lattice we can find cations & anions;

	D) compounds of higher order containing complex particles (complex ions), saving their stability while melted or dissolved in the centers of its lattice.				
12.	From the given con A) CCl ₄ ;	mpounds find coord B) [AgCl ₂] ⁻ ;	inate complexes: C) PtCl ₄ ;	D) [CuCl ₄] ²⁻ .	
13.	From the given con A) [Cr(NH ₂ -CH ₂ -C C) [Co(NH ₃) ₃ Cl ₃];		: B) [Pt(H ₂ O) (NF D) [Ni(CO) ₄].	H ₃) ₂ OH]Cl;	
14.	For the complex co A) 2; B) 3;		CH ₂ -CH ₂ -NH ₂)(CN)	2] the coordinate number equals to :	
15.	 Denticity of ligand can be found by: A) the charge of central complex-forming ion; B) the quantity of donor atoms in ligand taking part in complex formation; C) the quantity of coordinate bonds connecting ligands with the complex-forming atom; D) the quantity of ligands, coordinated around the complex-forming atom; 				
16.	 Chelating effect in complex formation can be explained by: A) the big size of polidentate ligand in complex compound; B) the formation of few bonds by ligand & complex forming atom; C) the high molecular mass of ligand; D) the formation of ring like structure between the ligand & complex-forming atom 				
17.	7. Define the orbitals on which the electronic sublevels of central complex-forming zinc ion are hybridized for the formation of bonds with Cl ⁻ ions in the complex ion [ZnCl ₄] ²⁻ . A) 3d, 4s; B) 3d, 4s, 4p; C) 4s, 4p; D) 4s, 4p, 4d.				
18.	A) aquacomplexes	omplex ligands we c ; B) ac xes; D) al	cidocomplexes;	f complexes:	
19.		-		ations of s-elements;	
20.	 Find the right name for the complex compound [Co(NH₃)₄Br₂]Cl: A) chloride of tetraamino dibromo cobalt (III); B) chloride of dibromo tetraamino cobalt (III); C) tetraamino dibromo cobaltate (III) chloride; D) dibromo tetraamino cobalt (III) chloride; 				
21.	Systems in which s A) true (crystallin C) colloidal – disp	e)solutions;	ed phase is situated B) molecular – di D) coarsely-dispe	1 2	
22.	Disperse systems i A) aerosols; C) emulsions;	B) su	phase & dispersion aspensions; pams.	medium are liquid are called:	
23.	A) peptization meB) solvents substitution	tution method; ushing with the help			

24.	 Kinetic stability of sols is performed by A) the Brownian motion of colloidal pa B) the diffusion of colloidal particles; C) the activity of stabilizers; D) the action of gravity forces on collo 	rticles;					
25.	In micelle formed by the reaction betwee A) Ba ²⁺ C) Na ⁺	een the BaCI ₂ & B) CI ⁻ D) SO ₄ ²⁻ .	x Na ₂ SO _{4 (excess)} , potencial determinating ions are:				
26.	Micelle, formed by the NaBr & AgF (exc A) {m[NaBr]nF}nAg ⁺ ; C) {m[AgBr]nF(n-x)Ag ⁺ }xAg ⁺	\mathbf{B}) {m[AgBr]	$nAg(n-x)F^{-}xF^{-};$				
27.	In diffuse layer of colloidal particle weA) potential determinating ions;C) molecules of solvent & potential determination		B) counterions;D) only molecules of solvent.				
28.	Coagulating activity for the micelle {m A) Cl ⁻ ; B) K ⁺ C) SO ₄ ²⁻ ; D) Ca	[AlPO ₄] _n PO ₄ ³⁻ (3	3n-x)Na ⁺ }xNa ⁺ will show such ions:				
<i>I</i>	The common properties of polymers & A) the presence of big surface area betwee B) the particles of dispersed phase have s C) they have high thermodynamic instab D) the particles of dispersed phase can not	een the dispersion size 10 ⁻⁷ m–10 ⁻⁹ r ility;	on medium & dispersed phase; m;				
30.	,	d polymer is cal limited swelling ptization;					
31.	31. The maximal value of orbital quantum electron number (<i>l</i>) on fourth energy level is: A) 1; B) 2; C) 3; D) 4.						
32.	32. Electrons with orbital quantum number equal to 0 ($l = 0$) are called: A) s-electrons; B) p- electrons; C) d- electrons; D) f- electrons;						
33.	33. Which atoms (in stationary condition) have electron with given quantum numbers: n = 3, l=1, m=0: A) Na; B) P; C) Mg; D) Ne?						
34.	The quantity of unpaired electrons in the A) 3; B) 4; C) 5; D) 6.	e Iron atom in r	non energized condition equals to:				
35.	35. The order of bond in the molecular H_2^+ ion equals to: A) 1; B) 2; C) 0,5; D) 0, 25.						
36.	6. Which particles contain unpaired electrons? A) N ₂ ; B) O ₂ ; C) F ₂ ; D) C ₂ ?						
37.	7. The charge of atom equals to: A) zero; B) periodic table number of element; C) quantity of electrons; D) nucleus charge;						
38.	8. Mark the symbol of chemical element which atom has (in basic condition) highest quantity of half filled orbitals:						

A) Ar; **B)** S; **C)** Fe; **D)** Cr.

- 39. Find incorrect statement. In the molecule of nitrogen:
 - A) multiplicity of bonds equal to 3; C) 1σ & 2π -bonds;

B) chemical bond is very strong;D) chemical charge is covalently polar.

40. Which atom from given has lowest atomic radius: **A)** H; **B)** He; **C)** Li; **D)** F?