Variant № 1 1. Find ionic equation of water. **A)** $$\frac{[\text{H}^+] \cdot [\text{OH}^-]}{[\text{H}_2\text{O}]} = 1.8 \cdot 10^{-16}$$ **B)** $$[H_3O^+][OH^-] = 10^{-14}$$ C) $$- \lg[H^+] \cdot [-\lg[OH^-] = 14$$ **D)** $$pH + pOH = 14$$ 2. The pOH value of blood varies in limits: **A)** $$7,36 - 7,40$$ **B)** $$6.64 - 6.40$$ **A)** $$7.36 - 7.40$$ **C)** $10^{-7.36} - 10^{-7.40}$ **D)** $$1 - 1.5$$. - 3. Buffer solutions, consisting of weak acid & its anion, usually have stable pH value equal to: - **A)** from 1 to 3 **B)** from 3 to 7 **C)** from 7 to 10 - **D)** from 10 to 14 - 4. The pH of the buffer consisting of the weak acid & its anion depends from: - **A)** the value of constancy of acidity - **B)** the ratio of acid & salt concentrations - C) the acid dissociations degrees - **D)** the absolute concentrations of buffer components - 5. Buffer capacity (**B**) is a property of buffer system: - A) to support the constancy of pH during buffers dilution - B) to contradict the pH change during the increase of buffers components concentrations - C) to contradict pH change during the addition of low quantities of acid or base - **D)** to support constancy of the pH, independently from the pOH value - 6. Buffer capacity of acidic buffer formed by the weak acid increases during the: - A) combined increase of acids concentration & salts concentration decrease - B) combined decrease of acids concentration & salts concentration increase - C) decrease of acids concentration - **D)** increase of salt concentration - 7. Buffer capacity of hydrocarbonate buffer by acid depends of: - A) NaHCO₃ concentration - **B)** H₂CO₃ concentration - C) the pH value of a buffer - **D)** the quantity of added acid - 8. Alkaline reserve of blood is developed: - A) by the partial pressure of free CO₂ in blood plasma - **B)** by the volume of CO₂ chemically fixed with hemoglobin in blood cells - C) by the volume of CO₂ chemically fixed with bicarbonate ion in blood plasma - **D)** by the volume of free CO_2 in the alveolar air - 9. Alkaline reserve of blood normally equals: **A)** to 50-70 % by volume **B)** to 53,3 gPa **C)** to 8-10 mmol/L **D)** to 7,36-7,40 10. Acidic-basic equilibrium in blood cells is performed by buffer systems: **A)** hydrocarbonate B) acetate C) phosphate **D)** hemoglobin - 11. Complex compounds are... - A) compounds of higher order got by the reactions of polymerization or polycondensation; - **B)** compounds of higher order got by the donor-acceptor mechanism: - C) compounds of lower order & in centers of its lattice we can find cations & anions; | | D) compounds of higher order containing complex particles (complex ions), saving their stability while melted or dissolved in the centers of its lattice. | | | | | |-----|--|---|--|--|--| | 12. | From the given con A) CCl ₄ ; | mpounds find coord
B) [AgCl ₂] ⁻ ; | inate complexes: C) PtCl ₄ ; | D) [CuCl ₄] ²⁻ . | | | 13. | From the given con
A) [Cr(NH ₂ -CH ₂ -C
C) [Co(NH ₃) ₃ Cl ₃]; | | : B) [Pt(H ₂ O) (NF D) [Ni(CO) ₄]. | H ₃) ₂ OH]Cl; | | | 14. | For the complex co A) 2; B) 3; | | CH ₂ -CH ₂ -NH ₂)(CN) | 2] the coordinate number equals to : | | | 15. | Denticity of ligand can be found by: A) the charge of central complex-forming ion; B) the quantity of donor atoms in ligand taking part in complex formation; C) the quantity of coordinate bonds connecting ligands with the complex-forming atom; D) the quantity of ligands, coordinated around the complex-forming atom; | | | | | | 16. | Chelating effect in complex formation can be explained by: A) the big size of polidentate ligand in complex compound; B) the formation of few bonds by ligand & complex forming atom; C) the high molecular mass of ligand; D) the formation of ring like structure between the ligand & complex-forming atom | | | | | | 17. | 7. Define the orbitals on which the electronic sublevels of central complex-forming zinc ion are hybridized for the formation of bonds with Cl ⁻ ions in the complex ion [ZnCl ₄] ²⁻ . A) 3d, 4s; B) 3d, 4s, 4p; C) 4s, 4p; D) 4s, 4p, 4d. | | | | | | 18. | A) aquacomplexes | omplex ligands we c
; B) ac
xes; D) al | cidocomplexes; | f complexes: | | | 19. | | - | | ations of s-elements; | | | 20. | Find the right name for the complex compound [Co(NH₃)₄Br₂]Cl: A) chloride of tetraamino dibromo cobalt (III); B) chloride of dibromo tetraamino cobalt (III); C) tetraamino dibromo cobaltate (III) chloride; D) dibromo tetraamino cobalt (III) chloride; | | | | | | 21. | Systems in which s A) true (crystallin C) colloidal – disp | e)solutions; | ed phase is situated B) molecular – di D) coarsely-dispe | 1 2 | | | 22. | Disperse systems i A) aerosols; C) emulsions; | B) su | phase & dispersion aspensions; pams. | medium are liquid are called: | | | 23. | A) peptization meB) solvents substitution | tution method; ushing with the help | | | | | 24. | Kinetic stability of sols is performed by A) the Brownian motion of colloidal pa B) the diffusion of colloidal particles; C) the activity of stabilizers; D) the action of gravity forces on collo | rticles; | | | | | | |----------|--|---|--|--|--|--|--| | 25. | In micelle formed by the reaction betwee A) Ba ²⁺ C) Na ⁺ | een the BaCI ₂ & B) CI ⁻ D) SO ₄ ²⁻ . | x Na ₂ SO _{4 (excess)} , potencial determinating ions are: | | | | | | 26. | Micelle, formed by the NaBr & AgF (exc
A) {m[NaBr]nF}nAg ⁺ ;
C) {m[AgBr]nF(n-x)Ag ⁺ }xAg ⁺ | \mathbf{B}) {m[AgBr] | $nAg(n-x)F^{-}xF^{-};$ | | | | | | 27. | In diffuse layer of colloidal particle weA) potential determinating ions;C) molecules of solvent & potential determination | | B) counterions;D) only molecules of solvent. | | | | | | 28. | Coagulating activity for the micelle {m A) Cl ⁻ ; B) K ⁺ C) SO ₄ ²⁻ ; D) Ca | [AlPO ₄] _n PO ₄ ³⁻ (3 | 3n-x)Na ⁺ }xNa ⁺ will show such ions: | | | | | | <i>I</i> | The common properties of polymers & A) the presence of big surface area betwee B) the particles of dispersed phase have s C) they have high thermodynamic instab D) the particles of dispersed phase can not | een the dispersion
size 10 ⁻⁷ m–10 ⁻⁹ r
ility; | on medium & dispersed phase;
m; | | | | | | 30. | , | d polymer is cal
limited swelling
ptization; | | | | | | | 31. | 31. The maximal value of orbital quantum electron number (<i>l</i>) on fourth energy level is: A) 1; B) 2; C) 3; D) 4. | | | | | | | | 32. | 32. Electrons with orbital quantum number equal to 0 ($l = 0$) are called: A) s-electrons; B) p- electrons; C) d- electrons; D) f- electrons; | | | | | | | | 33. | 33. Which atoms (in stationary condition) have electron with given quantum numbers: n = 3, l=1, m=0: A) Na; B) P; C) Mg; D) Ne? | | | | | | | | 34. | The quantity of unpaired electrons in the A) 3; B) 4; C) 5; D) 6. | e Iron atom in r | non energized condition equals to: | | | | | | 35. | 35. The order of bond in the molecular H_2^+ ion equals to:
A) 1; B) 2; C) 0,5; D) 0, 25. | | | | | | | | 36. | 6. Which particles contain unpaired electrons? A) N ₂ ; B) O ₂ ; C) F ₂ ; D) C ₂ ? | | | | | | | | 37. | 7. The charge of atom equals to: A) zero; B) periodic table number of element; C) quantity of electrons; D) nucleus charge; | | | | | | | | 38. | 8. Mark the symbol of chemical element which atom has (in basic condition) highest quantity of half filled orbitals: | | | | | | | **A)** Ar; **B)** S; **C)** Fe; **D)** Cr. - 39. Find incorrect statement. In the molecule of nitrogen: - A) multiplicity of bonds equal to 3; C) 1σ & 2π -bonds; B) chemical bond is very strong;D) chemical charge is covalently polar. 40. Which atom from given has lowest atomic radius: **A)** H; **B)** He; **C)** Li; **D)** F?