Министерство здравоохранения Республики Беларусь

Учреждение образования «ГРОДНЕНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ»

Кафедра общей и биоорганической химии

В.В. Болтромеюк Л.В. Добрынина А.К. Волкович

ОБЩАЯ ХИМИЯ

Сборник тестов для студентов лечебно-профилактического, педиатрического, медикопсихологического и медико-диагностического факультетов.

Гродно ГрГМУ 2013

Оглавление

Тесты к теме: Закон эквивалентов. Титриметрия	3
Тесты к теме: Растворы. Электролитическая диссоциация. Буферные раст	воры 14
Тесты к теме: Комплексные соединения	41
Тесты к теме: Скорость химических реакций	44
Тесты к теме: Катализ	56
Тесты к теме: Электрохимия. Электропроводимость растворов	59
Тесты к теме: Поверхностные явления. Адсорбция	74
Тесты к теме: Дисперсные системы. Коллоидные растворы	89
Тесты к теме: Растворы биополимеров	106

Тесты к теме: Закон эквивалентов. Титриметрия

- 1. Химический эквивалент это:
 - а) всегда условная частица вещества;
 - б) условная или реальная частица вещества, в зависимости от вида химической реакции, в которой оно участвует;
 - в) всегда реальная частица вещества;
 - г) более высокий уровень организации материи, чем атом или молекула.
- 2. Для одного и того же вещества, участвующего в разных химических реакциях:
 - а) соответствует один и тот же химический эквивалент;
 - б) химический эквивалент по своей природе всегда соответствует его молекуле или формульной единице;
 - в) соответствует несколько химических эквивалентов;
 - г) химический эквивалент всегда составляет какую-то определенную часть молекулы или формульной единицы.
- 3. Определить, какую именно часть молекулы составляет химический эквивалент вещества онжом:
 - а) только исходя из конкретной химической реакции, в которой это вещество участвует;
 - б) исходя из формулы вещества;
 - в) как правило не предоставляется возможным;
 - г) на основании агрегатного состояния вещества.
- 4. Фактор эквивалентности это:
 - а) стехиометрический коэффициент перед формулой вещества в уравнении реакции;
 - б) целое число, определённое опытным путём;
 - в) сумма стехиометрических коэффициентов, стоящих перед формулами веществ в уравнении химической реакции;
 - г) число, показывающее, какую часть реальной частицы вещества X составляет его химический эквивалент.
- 5. Фактор эквивалентности вещества:
 - а) является безразмерной величиной;
 - б) определяется по формуле $f_{3KB(X)} = \frac{1}{7}$;
 - в) имеет размерность моль $^{-1}$;
 - г) всегда определяется экспериментально.
- 6. Для HNO₃ в реакции $S + 6HNO_3 \rightarrow H_2SO_4 + 6NO_2 + 2H_2O$ фактор эквивалентности равен:

 - a) 1/6;
 - б) 6;
 - в) 1;
 - Γ) 1/3.
- 7. Для H_3PO_4 в реакции $H_3PO_4 + Ca(OH)_2 = CaHPO_4 + 2H_2O$ фактор эквивалентности равен:
 - a) 1:
 - б) 2;
 - B) 1/3;

 Γ) 1/2. 8. Для MnSO₄ в реакции $2Mn^{+2}SO_4 + 5NaBi^{+5}O_3 + 16HNO_3 \rightarrow 2HMn^{+7}O_4 + 2Na_2SO_4 + 5Bi^{+3}(NO_3)_3 + NaNO_3 + 7H_2O_3$ фактор эквивалентности равен: a) 2; б) 1/2; в) 5; Γ) 1/5; 9. Для $Fe_2(SO_4)_3$ в реакции $Fe_2(SO_4)_3 + 6$ KOH $\rightarrow 2Fe(OH)_3 + 3$ K₂SO₄ фактор эквивалентности равен: a) 1; б) 6; в) 3; Γ) 1/6. 10. Для H_3PO_3 в реакции $H_3PO_3 + 2AgNO_3 + H_2O \rightarrow H_3PO_4 + 2Ag + 2HNO_3$ фактор эквивалентности равен: a) 1/2; б) 1; в) 2; г) 6. 11. Для превращения $C_2O_4^{2-} \rightarrow 2CO_2^{0}$ фактор эквивалентности оксалат-иона равен: a) 1; 6) 1/2;в) 1/4; Γ) 1/6. 12. Молярная масса эквивалентов HNO₂ в реакции $HNO_2 + Br_2 + H_2O \rightarrow HNO_3 + 2HBr$ pabha: а) 26 г/моль; б) 23,5 г/моль; в) 47 г/моль; г) 94 г/моль.

13. Молярная масса эквивалентов Са(ОН)2 в реакции

$$2AlCl_3 + 3Ca(OH)_2 = 3CaCl_2 + 2 Al(OH)_3$$
 равна:

- а) 25 г/моль;
- б) 37 г/моль;
- в) 74 г/моль;
- г) 148 г/моль.
- 14. Молярная масса эквивалентов MnO₂ в реакции

$$3 \text{ MnO}_2 + \text{KClO}_3 + 6\text{KOH} = 3\text{K}_2\text{MnO}_4 + \text{KCl} + 3\text{H}_2\text{O}$$
 равна:

- а) 43,5 г/моль;
- б) 87 г/моль;
- в) 174 г/моль;
- г) 435 г/моль.

- 15. Молярная масса эквивалентов для КСІО3 в реакции
 - $3MnO_2 + KClO_3 + 6KOH \rightarrow 3K_2MnO_4 + KCl + 3H_2O$ равна:
 - a) 20,42;
 - б) 122,5;
 - в) 40,8;
 - г) 24,5.
- 16. В реакции $3NaOH + FeCl_3 = 3 NaCl + Fe(OH)_3$ расходовалось 120г NaOH. Химическое количество эквивалентов NaOH при этом составляет:
 - а) 9 моль;
 - б) 6 моль;
 - в) 3 моль;
 - г) 1 моль.
- 17. В реакции $3P + 5HNO_3 + 2H_2O = 3H_3PO_4 + 5NO$ расходовалось 126г HNO₃. Химическое количество эквивалентов HNO₃ при этом составляет:
 - а) 1 моль;
 - б) 3 моль;
 - в) 5 моль;
 - г) 6 моль.
- 18. В реакции $HNO_2 + Br_2 + H_2O \rightarrow HNO_3 + 2HBr$ расходовалось 94г HNO_2 . Химическое количество эквивалентов HNO_2 при этом составляет:
 - а) 2 моль;
 - б) 4 моль;
 - в) 6 моль;
 - г) 7,5 моль.
- 19. В 5 дм³ раствора содержится 196г H_2SO_4 . Раствор необходим для осуществления реакции $H_2SO_4 + K_2S = K_2SO_4 + H_2S$.

Молярная концентрация химических эквивалентов H₂SO₄ в растворе равна:

- а) 0.8 моль/дм^3 ;
- б) 2.5 моль/дм^3 ;
- в) 5 моль/ $дм^3$;
- г) 7,5 моль/дм³.
- 20. В 2 дм³ раствора содержится 160г Br₂. Раствор необходим для осуществления реакции $HNO_2 + Br_2 + H_2O \rightarrow HNO_3 + 2HBr$

Молярная концентрация химических эквивалентов Br₂ в растворе равна:

- а) 0.5 моль/дм^3 ;
- б) 1 моль/ дм^3 :
- в) 2 моль/ $дм^3$;
- Γ) 4 моль/дм³.
- 21. В 3 дм³ раствора содержится 126г HNO₃. Раствор необходим для осуществления реакции $3Se + 4HNO_3 + H_2O \rightarrow 3H_2SeO_3 + 4NO$

Молярная концентрация химических эквивалентов HNO₃ в растворе равна:

- а) 2 моль/ $дм^3$;
- б) 1 моль/дм 3 ;
- в) 1.5 моль/дм^3 ;

- Γ) 3 моль/дм³.
- 22. В 2 $дм^3$ раствора содержится 196г H_3PO_4 . Раствор необходим для осуществления реакции $H_3PO_4 + 3NaOH = Na_3PO_4 + 3H_2O$

Молярная концентрация химических эквивалентов Н₃РО₄ в растворе равна:

- а) 0.33 моль/дм^3 ;
- б) 1 моль/ $дм^3$;
- в) 2 моль/дм^3 ;
- Γ) 3 моль/дм³.
- 23. При взаимодействии $H_2SO_{4(конц.)}$ с металлом выделился газ с плотностью 1,518 г/дм³. Фактор эквивалентности H_2SO_4 в этой реакции равен:
 - a) 1/2;
 - б) 1/4;
 - B) 1/8;
 - г) 2.
- 24. При взаимодействии H_2S с $HNO_{3(конц.)}$ выделился газ, относительная плотность которого по водороду равна 23. Молярная масса эквивалентов окислителя (г/моль) равна:
 - a) 17;
 - б) 32;
 - в) 34;
 - г) 63.
- 25. Согласно закона эквивалентов в химической реакции расходуются:
 - а) одинаковые массы исходных веществ;
 - б) одинаковые объёмы исходных веществ;
 - в) одинаковые химические количества исходных веществ;
 - г) одинаковые химические количества эквивалентов исходных веществ.
- 26. В титриметрическом анализе используются следующая математическая форма записи закона эквивалентов:
 - a) $\frac{m_1(X_1)}{m_2(X_2)} = \frac{M(1/zX_2)}{M(1/zX_1)};$
 - 6) $m_1(X_1) \cdot M(1/zX_1) = m_2(X_2) \cdot M(1/zX_2);$
 - B) $c[1/z^*(X_1)] \cdot V_1 = c[1/z^*(X_2)] \cdot V_2;$
 - $\Gamma) \frac{c[1/z * (X_1)]}{M[1/z * (X_1)]} = \frac{c[1/z * (X_2)]}{M[1/z * (X_2)]}$
- 27. Титр показывает:
 - а) сколько граммов вещества содержится в 1см³ раствора;
 - б) сколько моль вещества содержится в 1 см³ раствора;
 - в) сколько граммов вещества содержится в 100 г раствора;
 - г) сколько моль вещества содержится в 100г раствора.
- 28. На титрование 10 см³ исследуемого раствора, затратили 25 см³ рабочего раствора с молярной концентрацией химических эквивалентов вещества 0,02 моль/дм³. Молярная концентрация химических эквивалентов вещества в исследуемом растворе равна:
 - а) 0.15 моль/дм^3 ;
 - б) 0,5 моль/дм³;
 - в) 0.05 моль/дм^3 ;

- г) 0.025 моль/дм^3 .
- 29. На титрование 10 см³ 0,1020 М раствора НСІ пошло 12,5 см³ раствора КОН. Для раствора КОН будет верным:
 - а) титр КОН равен $0,00457 \text{ г/см}^3$;
 - б) молярная концентрация КОН равна 0,0816 моль/дм³;
 - в) химическое количество эквивалентов КОН в данной реакции равно 1,02 моль;
 - г) число формульных единиц КОН равно $0.614 \cdot 10^{21}$.
- 30. В титриметрическом анализе титрантом называется:
 - а) исследуемый раствор;
 - б) рабочий раствор;
 - в) любой раствор, используемый для анализа;
 - г) раствор индикатора.
- 31. Точкой эквивалентности в титриметрии называется:
 - а) момент окончания реакции, вследствие полного расходования обоих исходных веществ;
 - б) момент химической реакции, при котором массы расходованных исходных веществ равны друг другу;
 - в) момент химической реакции, при котором выполняется закон эквивалентов;
 - г) момент химической реакции, при котором объёмы использованных рабочего и исследуемого растворов равны друг другу.
- 32. Для определения точки эквивалентности в титриметрии используют:
 - а) кривые титрования;
 - б) растворы индикаторов;
 - в) зависимость скорости реакции от температуры;
 - г) зависимость скорости реакции от природы исходных веществ.
- 33. Кривые титрования показывают зависимость:
 - а) скорости химической реакции между титрантом и исследуемым веществом от времени;
 - б) концентрации определяемого вещества от объёма добавленного титранта;
 - в) какой-либо физической характеристики исследуемого раствора от объёма добавленного титранта;
 - г) концентрации исследуемого вещества от времени реакции.
- 34. В титриметрическом анализе может быть использована:
 - а) любая химическая реакция;
 - б) только окислительно-восстановительная реакция;
 - в) химическая реакция, которая соответствует предъявленным к ней требованиям;
 - г) только реакция ионного обмена.
- 35. Выберите правильные характеристики для кривых титрования:
 - а) скачок титрования не зависит от концентрации титруемого раствора и титранта;
 - б) вблизи точки эквивалентности наблюдается резкий скачок рН;
 - в) для фиксирования точки эквивалентности при кислотно-основном титровании можно использовать любой индикатор, интервал перехода окраски которого лежит в пределах скачка рН на кривой титрования;
 - Γ) при титровании сильной кислоты сильным основанием можно использовать только те индикаторы, у которых pT=7.

- 36. Для кривых титрования в случае нейтрализации слабой кислоты сильным основанием выберите правильное утверждение:
 - а) начало кривой на оси ординат лежит при большем значении рН по сравнению с кривой титрования сильной кислоты сильным основанием;
 - б) точка эквивалентности не совпадает с нейтральной средой;
 - в) для определения точки эквивалентности следует выбирать индикатор метилоранж;
 - г) скачок титрования сужается и будет тем уже, чем слабее титруемая кислота.
- 37. Реакция, используемая в титриметрии должна:
 - а) быть гомогенной;
 - б) быть гетерогенной;
 - в) протекать с достаточной скоростью, быть необратимой и однонаправленной, в ней должна быстро и точно фиксироваться точка эквивалентности;
 - г) быть только простой.
- 38. Способ титрования, при котором используется два рабочих раствора и один исследуемый может быть:
 - а) только прямым;
 - б) как прямым, так и обратным;
 - в) обратным;
 - г) обратным или косвенным (иначе: метод замещения).
- 39. К требованиям, которым должны соответствовать реакции, используемые в титриметрии, относятся
 - а) реакция должна быть практически необратимой;
 - б) реакция должна протекать с достаточной скоростью;
 - в) реакция должна быть экзотермической;
 - г) в реакциях должна точно и быстро фиксироваться точка эквивалентности.
- 40. Закон эквивалентов для прямого титрования имеет вид
 - a) $N_1V_1 = N_2V_2$;
 - 6) $c[1/z^*(X_1)] \cdot V_1 = c[1/z^*(X_2)] \cdot V_2;$
 - B) $N_2V_2 = N_1V_1 \cdot N_3V_3$;
 - Γ) $c[1/z^*(X_2)] \cdot V_2 = c[1/z^*(X_1)] \cdot V_1 + c[1/z^*(X_3)] \cdot V_3$
- 41. Закон эквивалентов для обратного титрования имеет вид
 - a) $N_1V_1 = N_2V_2$;
 - 6) $c[1/z^*(X_1)] \cdot V_1 = c[1/z^*(X_2)] \cdot V_2;$
 - B) $N_2V_2 = N_1V_1 \cdot N_3V_3$;
 - Γ) $c[1/z^*(X_2)] \cdot V_2 = c[1/z^*(X_1)] \cdot V_1 + c[1/z^*(X_3)] \cdot V_3$.
- 42. Закон эквивалентов для косвенного титрования имеет вид
 - a) $N_1V_1 = N_2V_2$;
 - 6) $c[1/z^*(X_1)] \cdot V_1 = c[1/z^*(X_2)] \cdot V_2;$
 - B) $N_2V_2 = N_1V_1 \cdot N_3V_3$;
 - Γ) $c[1/z^*(X_2)] \cdot V_2 = c[1/z^*(X_1)] \cdot V_1 + c[1/z^*(X_3)] \cdot V_3$.
- 43. При прямом титровании молярная концентрация химических эквивалентов вещества в исследуемом растворе (N_1) рассчитывается по формуле:

a)
$$N_1 = \frac{N_2 \cdot V_2}{V_2}$$
;

6)
$$N_1 = \frac{V_1}{N_2 \cdot V_2}$$
;

B)
$$N_1 = N_2 \cdot V_2 \cdot V_1$$
;

r)
$$N_1 = \frac{V_2 \cdot V_1}{N_2}$$
;

44. При обратном титровании молярная концентрация химических эквивалентов вещества в исследуемом растворе (N_1) рассчитывается по формуле:

a)
$$N_1 = \frac{N_2 \cdot V_2}{V_1}$$
;

$$\text{ 6) } N_1 = \frac{N_2 V_2 - N_3 V_3}{V_1};$$

B)
$$N_1 = \frac{V_1}{N_2 V_2 - N_3 V_3};$$

$$\Gamma) \ N_1 = \frac{V_1}{N_2 \cdot V_2};$$

- 45. При косвенном или заместительном титровании:
 - а) используется только один рабочий раствор;
 - б) используются два рабочих раствора, один из которых берётся в избытке;
 - в) вещество исследуемого раствора с помощью химической реакции замешается на эквивалентное количество другого вещества;
 - г) используются три и более рабочих растворов.
- 46. В титриметрическом методе не может быть использована:
 - а) обратимая реакция;
 - б) сложная реакция, протекающая в несколько стадий;
 - в) реакция, состоящая из нескольких параллельных стадий протекающих одновременно;
 - г) реакция, протекающая нестехиометрически.
- 47. Рабочим раствором в титриметрическом методе анализа называется:
 - а) любой используемый раствор;
 - б) раствор с неизвестной концентрацией растворённого вещества;
 - в) раствор, с помощью которого определяют концентрацию вещества в исследуемом растворе;
 - г) раствор с известной концентрацией растворённого вещества.
- 48. Для приготовления рабочего раствора нужной концентрации на основании точно взвешенной массы вещества может быть использовано:
 - а) любое твёрдое химическое соединение;
 - б) только то соединение, которое соответствует определённым требованиям;
 - в) вещество непостоянного состава с небольшой молекулярной массой;
 - г) только то соединение, водные растворы которого прозрачны.
- 49. Рабочим раствором с установлением титром называется:
 - а) раствор, приготовленный на основании теоретически рассчитанной и точно взвешенной навески исходного вещества;
 - б) раствор, точная концентрация которого устанавливается путём титрования после приготовления;

- в) стандартизированный раствор;
- г) исследуемый раствор, титр которого установлен.
- 50. Рабочим раствором с приготовленным титром называется:
 - а) раствор, приготовленный на основании теоретически рассчитанной и точно взвешенной навески исходного вещества;
 - б) раствор, точная концентрация которого устанавливается путём титрования после приготовления;
 - в) стандартный раствор;
 - г) исследуемый раствор, титр которого установлен.
- 51. Масса тетрабората натрия ($Na_2B_4O_7 \cdot 10H_2O$) необходимая для приготовления 500 см³ 0,1 н раствора ($f_{2KB}=1/2$) равна:
 - a) 4,789 Γ;
 - б) 9,55 г;
 - в) 19,10 г;
 - г) 355 г.
- 52. Ацидиметрией называется метод кислотно-основного титрования:
 - а) в котором в качестве рабочего раствора используют раствор кислоты;
 - б) в котором в качестве рабочего раствора используют раствор щелочи;
 - в) с помощью которого определяют количественное содержание основания в исследуемом растворе;
 - г) с помощью которого определяют количественное содержание кислоты в исследуемом растворе.
- 53. Алкалиметрией называют метод кислотно-основного титрования:
 - а) в котором в качестве рабочего раствора используют раствор кислоты;
 - б) в котором в качестве рабочего раствора используют раствор щелочи;
 - в) с помощью которого определяют количественное содержание основания в исследуемом растворе;
 - г) с помощью которого определяют количественное содержание кислоты в исследуемом растворе.
- 54. В ацидиметрии для стандартизации рабочих растворов используют
 - a) Na₂CO₃;
 - б) щавелевую кислоту;
 - в) янтарную кислоту;
 - г) Na₂B₄O₇·10H₂O.
- 55. В алкалиметрии для стандартизации рабочих растворов используют
 - a) Na₂CO₃;
 - б) щавелевую кислоту;
 - в) янтарную кислоту;
 - г) Na₂B₄O₇· 10H₂O.
- 56. Точку эквивалентности в кислотно-основном титровании определяют:
 - а) инструментально с помощью потенциометрических, кондуктометрических, спектрофотометрических и других измерений;
 - б) визуально на основании изменения окраски раствора при титровании в присутствии индикаторов;

- в) путём измерения затраченного объёма титранта;
- г) на основании теоретических расчётов и полученных практических результатов.
- 57. Интервал перехода кислотно-основного индикатора это:
 - а) область значений pH раствора, внутри которой происходит плавное изменения окраски индикатора;
 - б) время, за которое индикатор в растворе меняет свою окраску при добавлении сильной кислоты или щелочи;
 - в) тот минимальный объём раствора сильной кислоты, который нужно добавить к раствору индикатора, чтобы он изменил свою окраску на противоположную;
 - г) тот минимальный объём раствор щелочи, который нужно добавить к раствору индикатора, чтобы он изменил свою окраску на противоположную.
- 58. Точка эквивалентности совпадает с точкой нейтральности (рН = 7) на кривой титрования:
 - а) при титровании слабой кислоты сильным основанием;
 - б) при титровании сильной кислоты сильным основанием и, наоборот;
 - в) всегда:
 - г) при титровании слабого основания сильной кислотой;
- 59. Точка эквивалентности лежит на кривой титрования при pH > 7 в случае:
 - а) титрования сильной кислоты сильным основанием и наоборот;
 - б) титрования слабого основания сильной кислотой;
 - в) титрования слабой кислоты сильным основанием;
 - г) титрования слабого основания слабой кислотой.
- 60. Точка эквивалентности лежит на кривой титрования при pH < 7 в случае:
 - а) титрования сильной кислоты сильным основанием и, наоборот;
 - б) титрования слабого основания сильной кислотой;
 - в) титрования слабой кислоты сильным основанием;
 - г) титрования слабого основания слабой кислотой.
- 61. Интервал перехода для большинства кислотно-основных индикаторов равен:
 - a) $\frac{c(Hnd)}{c(Ind)} \pm 1;$
 - б) $c(Ind^{-})/c$ (HInd) ± 1 ;
 - в) pK_{uho} ± 1 ;
 - Γ) $K_{u \mapsto \partial} \pm 1$.
- 62. Величина интервала перехода кислотно-основного индикатора зависит от:
 - а) природы веществ в исследуемом и рабочем растворах;
 - б) особенностей структуры молекул индикатора;
 - в) величины Кинд;
 - г) константы кислотности и константы основности веществ в исследуемом и рабочем растворах.
- 63. Внутренним кислотно-основным индикатором называется:
 - а) рабочий раствор, имеющий яркую окраску, исчезающую в конце титрования и используемый в качестве индикатора;
 - б) вещество, добавляемое в систему в конце титрования, и образующее с веществом рабочего раствора неустойчивое окрашенное соединение;
 - в) рабочий или исследуемый раствор, исчезновение яркой окраски которого свидетельствует о конце титрования;
 - г) индикатор, который вводиться в систему перед началом процесса титрования.

- 64. Внешним кислотно-основным индикатором называется:
 - а) рабочий раствор, имеющий яркую окраску, исчезающую в конце титрования и используемый в качестве индикатора;
 - б) вещество, добавляемое в систему в конце титрования, и образующее с веществом рабочего раствора неустойчивое окрашенное соединение;
 - в) рабочий или исследуемый раствор, исчезновение яркой окраски которого свидетельствует о конце титрования;
 - г) индикатор, реакцию с которым проводят вне анализируемой смеси, путём отбора от неё нескольких капель раствора.
- 65. Точка эквивалентности в редоксиметрии может быть определена:
 - а) визуально, с помощью кислотно-основных индикаторов;
 - б) визуально, с помощью редокс-индикаторов;
 - в) экспериментально, с помощью потенциометрических измерений;
 - г) визуально, по изменению окраски одного из участников протекающей реакции.
- 66. Точка эквивалентности в перманганатометрии определяется, как правило:
 - а) экспериментально, с помощью потенциометрических измерений;
 - б) визуально, по изменению окраски КМпО4;
 - в) визуально, с помощью кислотно-основных индикаторов;
 - г) визуально, с помощью редокс-индикаторов.
- 67. Точка эквивалентности в иодометрии может быть определена визуально:
 - а) с помощью редокс-индикаторов;
 - б) с помощью кислотно-основных индикаторов;
 - в) с помощью специфических индикаторов;
 - г) по изменению окраски одного из участников реакции.
- 68. Для редоксиметрии можно использовать:
 - а) любые окислительно-восстановительные пары;
 - б) окислительно-восстановительные пары, не имеющие окраски в водных растворах;
 - в) окислительно-восстановительные пары, у которых разность их стандартных редокспотенциалов меньше 0,4 В;
 - г) окислительно-восстановительные пары, у которых разность их стандартных редокспотенциалов больше $0,4~\mathrm{B}.$
- 69. Интервал перехода для редокс-индикаторов может быть рассчитан по формуле:
 - a) $E_{ind} = E_{ind}^0 \pm \frac{0.059}{n}$;
 - $6) \quad E = E^{0} + \frac{0,059}{n} \lg \frac{C(Ind_{OX})}{C(Ind_{Red})};$
 - в) $pH = pKa \pm 1$;
 - $\Gamma) \quad \Delta E = E_{Ox}^0 E_{Red}^0.$
- 70. Для создания кислой среды в перманганатометрии используют:
 - а) любую сильную кислоту;
 - б) соляную кислоту;
 - в) разбавленную серную кислоту;
 - г)разбавленную азотную кислоту.
- 71. Для определения окислителей в перманганатометрии может быть использован:
 - а) метод прямого титрования;

- б) метод обратного титрования;
- в) метод замещения;
- г) любой из методов титрования.
- 72. Рабочими растворами в перманганатометрии являются:
 - а) раствор КМпО4;
 - б) раствор КІ;
 - в) раствор $Na_2S_2O_3$;
 - Γ) раствор $H_2C_2O_4$.
- 73. Рабочими растворами в иодометрии являются:
 - a) раствор Na₂C₂O₄;
 - б) раствор K_2SO_4 ;
 - в) раствор $Na_2S_2O_3$;
 - Γ) раствор I_2 вКІ.
- 74. Стандартными растворами (растворами с приготовленным титром) являются:
 - а) раствор КМпО₄;
 - б) раствор $Na_2C_2O_4$;
 - в) раствор $Na_2S_2O_3$;
 - г) раствор КІ.
- 75. Стандартизированными растворами (растворами с установленным титром) являются:
 - а) раствор I_2 вKI;
 - б) раствор $H_2C_2O_4$;
 - в) раствор Na₂S₂O₃;
 - г) раствор КМпО₄.

Ответы

	Химическ	сий эквивалент. (Эсновы титримет	рического метода	анализа
1. б		16. в	31. а; в	46. а; в	61. в
2. в		17. г	32. а; б	47. в; г	62. б; в
3. a		18. б	33. б; в	48. б	63. г
4. г		19. a	34. в	49. б; в	64. г
5. a; б		20. б	35. б; в	50. а; в	65. б; в; г
6. в		21. a	36. а; б; в	51. б	66. б
7. г		22. г	37. а; в	52. а; в	67. в; г
8. г		23. в	38. в	53. б; г	68. г
9. г		24. г	39. а; б; г	54. а; г	69. a
10. a		25. г	40. а; б	55. б; в	70. в
11. б		26. в	41. в; г	56. а; б	71. б; в
12. б		27. a	42. а; б	57. а; в	72. а; г
13. б		28. б	43. a	58. б	73. в; г
14.a		29. а; б; г	44. б	59. в	74. б
15. a		30. б	45. б; в	60. б	75. а; в; г

Тесты к теме: Растворы. Электролитическая диссоциация. Буферные растворы

- 1. Растворами называются:
 - а) термодинамически устойчивые гомогенные системы, состоящие из двух и более компонентов;
 - б) термодинамически неустойчивые гомогенные системы, состоящие из одного компонента;
 - в) термодинамически устойчивые гетерогенные системы, состоящие из одного компонента;
 - г) термодинамически неустойчивые гетерогенные системы, состоящие из двух и более компонентов.
- 2. Земная атмосфера:
 - а) пример жидких растворов;
 - б) пример газообразных растворов;
 - в) пример твердых растворов;
 - г) не является раствором.
- 3. Растворимость это:
 - а) количество молей вещества, способное раствориться в 1 л. раствора;
 - б) масса вещества (г), способная раствориться в 100г (или 1000 г) растворителя;
 - в) химическое количество вещества, способное раствориться в 1 кг раствора;
 - г) количество мл вещества, способное раствориться в 1 моле раствора.
- 4. Угол связи между атомами в молекуле воды равен:
 - a) 104.5° ;
 - б) 109,5°;
 - в) 180°;
 - г) 120°.
- 5. Какое максимальное количество водородных связей может образовать одна молекула воды с другими молекулами воды:
 - a) 1;
 - б) 2;
 - в) 3;
 - r) 4.
- 6. При растворении твердых веществ в воде теплота:
 - а) всегда поглощается;
 - б) всегда выделяется;
 - в) может поглощаться или выделяться;
 - г) не выделяется и не поглощается.
- 7. К истинным растворам относится:
 - а) молоко;
 - б) взмученный ил;
 - в) раствор глюкозы;
 - г) раствор медного купороса.

- 8. В процессе растворения различают стадии:
 - а) физическую и химическую;
 - б) физическую и механическую;
 - в) химическую и термодинамическую;
 - г) химическую и молекулярную.
- 9. На физической стадии растворения жидкости или твердого вещества энергия:
 - а) всегда выделяется;
 - б) всегда затрачивается;
 - в) не расходуется;
 - г) может затрачиваться или выделятся.
- 10. На физической стадии растворения газов энергия:
 - а) всегда выделяется;
 - б) всегда затрачивается;
 - в) не расходуется;
 - г) может затрачиваться или выделятся.
- 11. На химической стадии растворения происходит:
 - а) разрушение кристаллической решетки растворяемого вещества;
 - б) распределение частиц растворяемого вещества во всем объеме раствора;
 - в) образование гидратов;
 - г) образование сольватов.
- 12. На физической стадии растворения происходит:
 - а) разрушение кристаллической решетки растворяемого вещества;
 - б) распределение частиц растворяемого вещества во всем объеме раствора;
 - в) образование гидратов;
 - г) образование сольватов.
- 13. При гидратации ионов число удерживаемых молекул воды зависит от:
 - а) массы иона;
 - б) радиуса иона;
 - в) заряда иона;
 - г) температуры воды.
- 14. Контракция это:
 - а) сжатие объема раствора из-за его самоуплотнения;
 - б) увеличение объема раствора из-за его саморасширения;
 - в) изменение концентрации растворенного вещества в растворе;
 - г) отношение количества вещества к объему раствора.
- 15. Глауберова соль это кристаллогидрат, соответствующий формуле:
 - a) CuSO₄·5H₂O;
 - б) FeSO₄·7H₂0;
 - в) MgSO₄·7H₂O;
 - г) Na₂SO₄ · 10H₂O.
- 16. Английская соль это кристаллогидрат, соответствующий формуле:

- a) CuSO₄·5H₂O;
- б) FeSO₄·7H₂0;
- B) MgSO₄·7H₂O;
- г) Na₂SO₄ · 10H₂O.
- 17. Гипс это кристаллогидрат, соответствующий формуле:
 - a) CaSO₄·2H₂O;
 - б) FeSO₄·7H₂0;
 - B) $MgSO_4 \cdot 7H_2O$;
 - г) Na₂SO₄ · 10H₂O.
- 18. При растворении газов теплота:
 - а) всегда поглощается;
 - б) всегда выделяется;
 - в) может поглощаться или выделяться;
 - г) не выделяется и не поглощается.
- 19. Теплоту, выделяемую или поглощаемую при растворении 1 моля вещества, называют его:
 - а) растворимостью;
 - б) теплотой растворения;
 - в) теплотой раствора;
 - г) температурным коэффициентом.
- 20. В полярных растворителях хорошо растворяются вещества:
 - а) со слабополярными или неполярными ковалентными связями;
 - б) только с неполярными ковалентными связями;
 - в) с ионными связями;
 - г) с ковалентными полярными связями.
- 21. В неполярных растворителях хорошо растворяются вещества:
 - а) со слабополярными ковалентными связями;
 - б) с неполярными ковалентными связями;
 - в) с ионными или ковалентными полярными связями;
 - г) только с ионными связями.
- 22. Согласно закону Генри растворимость газа при постоянной температуре прямо пропорциональна:
 - а) его массовой доле;
 - б) его давлению над раствором;
 - в) его молярной массе;
 - г) его молярной концентрации.
- 23. При растворении смеси нескольких газов растворимость каждого компонента смеси при постоянной температуре пропорциональна его парциальному давлению над жидкостью и не зависит от общего давления смеси. Это формулировка закона:
 - а) Генри;
 - б) Рауля;
 - в) Дальтона;
 - г) Аррениуса.
- 24. Растворимость твердых веществ с повышением температуры:
 - а) чаще всего повышается;

- б) чаще всего понижается;
- в) не зависит от изменения температуры;
- г) зависит от присутствия катализаторов.
- 25. Растворимость газов в жидкостях с повышением температуры:
 - а) чаще всего повышается;
 - б) чаще всего понижается;
 - в) не зависит от изменения температуры;
 - г) зависит от присутствия катализаторов.
- 26. Согласно закону Сеченова присутствие электролита в растворе:
 - а) не влияет на растворимость в нем газа;
 - б) увеличивает растворимость в нем газа;
 - в) снижает растворимость в нем газа;
 - г) газы в растворах электролитов вообще не растворяются.
- 27. Система «вода этиловый спирт» при комнатной температуре:
 - а) пример неограниченной растворимости жидкостей друг в друге;
 - б) пример ограниченной растворимости жидкостей друг в друге;
 - в) пример практически нерастворимых друг в друге жидкостей;
 - г) пример несмешивающихся жидкостей.
- 28. Система «вода анилин» при комнатной температуре:
 - а) пример неограниченной растворимости жидкостей друг в друге;
 - б) пример ограниченной растворимости жидкостей друг в друге;
 - в) пример практически нерастворимых друг в друге жидкостей;
 - г) пример несмешивающихся жидкостей.
- 29. Система «вода бензол» при комнатной температуре:
 - а) пример неограниченной растворимости жидкостей друг в друге;
 - б) пример ограниченной растворимости жидкостей друг в друге;
 - в) пример практически нерастворимых друг в друге жидкостей;
 - г) пример несмешивающихся жидкостей.
- 30. При повышении температуры взаимная растворимость жидкостей:
 - а) обычно увеличивается;
 - б) обычно уменьшается;
 - в) не изменяется;
 - г) зависит от присутствия катализаторов.
- 31. Температура, выше которой две жидкости начинают неограниченно растворяться друг в друге, называется:
 - а) температурой кипения;
 - б) температурой растворения;
 - в) теплотой растворения;
 - г) критической температурой растворения.
- 32. В законе распределения Нернста C_1/C_2 =К символ «К» это:
 - а) коэффициент растворимости;
 - б) коэффициент распределения;
 - в) коэффициент осаждения;

- г) температурный коэффициент.
- 33. Раствор, в котором содержится максимально возможное в данных условиях количество растворенного вещества, называется:
 - а) концентрированным;
 - б) пересыщенным;
 - в) насыщенным;
 - г) ненасыщенным.
- 34. Раствор, который содержит меньше вещества, чем его может раствориться при данных условиях, называется:
 - а) концентрированным;
 - б) пересыщенным;
 - в) насыщенным;
 - г) ненасыщенным.
- 35. Раствор, который содержит в себе по массе больше растворенного вещества, чем его может раствориться при данных условиях, называется:
 - а) концентрированным;
 - б) пересыщенным;
 - в) насыщенным;
 - г) ненасыщенным.
- 36. Концентрированным называется раствор, в котором масса растворенного вещества не отличается от массы растворителя более чем:
 - a) в 10 раз;
 - б) в 100 раз;
 - в) в 5 раз;
 - г) в 500 раз.
- 37. Разбавленным называется раствор, в котором масса растворенного вещества меньше массы растворителя:
 - а) более чем в 10 раз;
 - б) более чем в 100 раз;
 - в) более чем в 5 раз;
 - г) более чем в 500 раз.
- 38. Массовая доля растворенного вещества это отношение:
 - а) массы растворенного вещества к массе растворителя;
 - б) массы растворителя к массе растворенного вещества;
 - в) массы раствора к массе растворенного вещества;
 - г) массы растворенного вещества к массе раствора.
- 39. Из концентрированного раствора можно получить разбавленный:
 - а) удаляя растворитель;
 - б) добавляя растворитель;
 - в) удаляя растворенное вещество;
 - г) добавляя растворенное вещество.
- 40. Определите титр NaOH для раствора объемом 3 л, если в нем находится 1,5 моль щелочи:
 - a) $0.02 \, \Gamma/\text{мл}$;
 - б) 0,2 г/мл;

- в) 2 г/мл;
- г) 20 г/мл.
- 41. Массовая доля, выраженная в процентах, показывает:
 - а) массу вещества в 100 мл раствора;
 - б) массу вещества в 100 г раствора;
 - в) массу вещества в 1000 г раствора;
 - г) массу вещества в 1000 г растворителя.
- 42. Массовая доля выражается в:
 - a) г/л;
 - б) моль/л;
 - в) долях единицы;
 - г) процентах.
- 43. Молярная концентрация вещества это отношение:
 - а) количества растворенного вещества к объему растворителя;
 - б) количества растворенного вещества к объему раствора;
 - в) количества растворенного вещества к массе растворителя;
 - г) массы вещества к объему раствора.
- 44. Титром называется отношение:
 - а) количества растворенного вещества к объему растворителя;
 - б) количества растворенного вещества к объему раствора;
 - в) количества растворенного вещества к массе растворителя;
 - г) массы вещества к объему раствора.
- 45. Моляльная концентрация вещества это отношение:
 - а) количества растворенного вещества к объему растворителя;
 - б) количества растворенного вещества к объему раствора;
 - в) количества растворенного вещества к массе растворителя:
 - г) массы вещества к объему раствора.
- 46. Коллигативными свойствами растворов называются те свойства, которые:
 - а) зависят от массы частиц растворенного вещества, но не зависят от их формы и размеров;
 - б) зависят от массы и формы частиц растворенного вещества, но не зависят от их количества;
 - в) зависят от количества частиц растворенного вещества, но не зависят от их массы и формы;
 - г) зависят от формы частиц растворенного вещества, но не зависят от их массы и размеров.
- 47. Коллигативными свойствами растворов являются:
 - а) осмотическое давление;
 - б) понижение температуры замерзания растворов;
 - в) повышение температуры замерзания растворов;
 - г) повышение температуры кипения растворов.
- 48. Коллигативные свойства будут одинаковыми у растворов, содержащих:
 - а) разные по природе вещества с одинаковой массой;
 - б) одинаковые по природе вещества, даже если эти растворы содержат разное количество частиц;

- в) разные по природе вещества, но с одинаковым количеством частиц;
- г) одинаковые по природе вещества, даже если они имеют разную массу.
- 49. Равномерное распределение частиц растворителя и растворенного вещества по всему объему системы в результате их беспорядочного теплового движения, называется:
 - а) осмос;
 - б) растворение;
 - в) лизис;
 - г) диффузия.
- 50. При диффузии растворенное вещество:
 - а) переходит из области с его меньшей концентрацией в область с большей концентрацией;
 - б) переходит из области с его большей концентрацией в область с меньшей концентрацией;
 - в) проникает через полупроницаемую мембрану в раствор с большей концентрацией;
 - г) проникает через полупроницаемую мембрану в раствор с меньшей концентрацией.

51. Осмосом называется:

- а) процесс проникновения молекул растворенного вещества через полупроницаемую мембрану из раствора с большей концентрацией в раствор с меньшей концентрацией;
- б) преимущественно односторонняя самопроизвольная диффузия молекул растворителя через полупроницаемую мембрану из раствора с меньшей концентрацией в раствор с большей концентрацией;
- в) процесс равномерного распределения молекул растворенного вещества по всему объему раствора;
- г) преимущественно односторонняя самопроизвольная диффузия молекул растворителя через полупроницаемую мембрану из раствора с большей концентрацией в раствор с меньшей концентрацией.
- 52. Закон Вант-Гоффа:
 - a) P=C * R * T;
 - б) P=C * F * Т;
 - B) P=R * F * T;
 - Γ) P=n * R * T.
- 53. Постоянство осмотического давления крови в человеческом организме:
 - а) изоосмия;
 - б) изотония;
 - в) изотермия;
 - г) изогамия.
- 54. Осмотическое давление крови человека в норме равно:
 - a) 101,3 κΠa;
 - б) 340 380 кПа;
 - в) $640 680 \text{ к}\Pi \text{a}$;
 - г) $740 780 \text{ к}\Pi \text{a}$.
- 55. Основным органом, регулирующим осмотическое давление в организме, является:
 - а) сердце;
 - б) легкие;
 - в) кишечник;

56. Основное свойство мембраны, лежащее в основе осмоса: а) большая площадь поверхности; б) избирательная проницаемость; в) высокая прочность; г) двухслойное строение. 57. Определите массовую долю КСІ в растворе, если в 100 г раствора содержится 48 г этого вещества: a) 56 %; б) 48%; в) 0,56; r) 0,48. 58. Определите мольную долю NaOH в растворе, который получен при растворении 2 моль щелочи в 360 г. воды: a) 0,09; б) 0,10; в) 0,11; r) 0,12. 59. Определите массовую долю серной кислоты в растворе массой 245г, содержащем 0,5 моль H₂SO₄: a) 20 %; б) 0,2 г/моль; в) 0,2; г) 0,2 моль/л. 60. Рассчитайте титр соляной кислоты для раствора объемом 1,2 дм³, если в нем находится 0.41 моль HCl: а) 1,6 моль/л; б) 0,03 моль/л; в) $0.0125 \, \Gamma/M$ л; г) 3,3 моль/кг. 61. Растворы, осмотическое давление которых равно осмотическому давлению плазмы крови, называются: а) гипотоническими; б) гипертоническими; в) изотоническими; г) гомотоническими. 62. Растворы, осмотическое давление которых меньше осмотического давления плазмы

г) почки.

крови, называются:
a) гипотоническими;
б) гипертоническими;
в) изотоническими;
г) гомотоническими.

63. Pa	створы,	осмотическое	давление	которых	больше	осмотического	давления	плазмы
кр	ови, назі	ываются:						
a)	гипото	ническими;						
· ·		оническими;						
	-	ическими;						
г)		ническими.						
(1 TI								

- 64. Изотоническим раствором по отношению к крови является:
 - a) 0,09% p-p NaCl;
 - б) 0,9% p-p NaCl;
 - в) 4.5 5% p-р глюкозы;
 - г) 45 50 % p-р глюкозы
- 65. Суммарная концентрация всех кинетически активных частиц в крови называется:
 - а) изомолярность;
 - б) осмолярность;
 - в) изотонический коэффициент;
 - г) изоосмия.
- 66. При значительной кровопотере в кровеносное русло человека вводят растворы:
 - а) гипертонические;
 - б) гипотонические;
 - в) изотонические;
 - г) одномоляльные.
- 67. При помещении клетки в гипертонический раствор она:
 - а) набухает и лопается;
 - б) сморщивается;
 - в) не изменяет своего состояния;
 - г) начинает интенсивно делиться.
- 68. Сморщивание клетки при помещении ее в гипертонический раствор называется:
 - а) гемолиз;
 - б) цитолиз;
 - в) лизис;
 - г) плазмолиз.
- 69. При помещении клетки в гипотонический раствор она:
 - а) набухает и лопается;
 - б) сморщивается;
 - в) не изменяет своего состояния;
 - г) начинает интенсивно делиться.
- 70. Набухание и разрыв клетки при помещении ее в гипотонический раствор называется:
 - а) лизис;
 - б) плазмолиз;
 - в) осмолиз;
 - г) гетеролиз.
- 71. Гемолиз это:
 - а) разрушение лейкоцитов;

- б) сморщивание клетки;
- в) набухание клетки;
- г) разрушение эритроцитов.
- 72. При контакте эритроцитов с 0,9%-м раствором NaCl:
 - а) они подвергаются плазмолизу;
 - б) они подвергаются гемолизу;
 - в) с ними ничего не происходит;
 - г) они начинают интенсивно делиться.
- 73. При контакте эритроцитов с 9%-м раствором NaCl:
 - а) они подвергаются плазмолизу;
 - б) они подвергаются гемолизу;
 - в) с ними ничего не происходит;
 - г) они начинают интенсивно делиться.
- 74. При контакте эритроцитов с 0,009%-м раствором NaCl:
 - а) они подвергаются плазмолизу;
 - б) они подвергаются гемолизу;
 - в) с ними ничего не происходит;
 - г) они начинают интенсивно делиться.
- 75. Гипертонические растворы применяются в медицине:
 - а) при глаукоме для снижения внутриглазного давления;
 - б) в качестве повязок для очищения гнойных ран;
 - в) при кровопотере для введения в кровь;
 - г) не применяются вообще.
- 76. Пар, формирующийся в закрытом сосуде над чистым растворителем в момент наступления равновесия между процессами испарения и конденсации, называется:
 - а) ненасыщенным паром;
 - б) пересыщенным паром;
 - в) полунасыщенным паром;
 - г) насыщенным паром.
- 77. Давление пара над раствором или растворителем измеряют при помощи:
 - а) осмометра;
 - б) вольтметра;
 - в) тонометра;
 - г) манометра.
- 78. При повышении температуры давление насыщенного пара над растворителем:
 - а) увеличивается;
 - б) уменьшается;
 - в) не изменяется;
 - г) может увеличиваться или уменьшаться.
- 79. Давление насыщенного пара над раствором по отношению к давлению насыщенного пара над чистым растворителем:
 - а) повышается;
 - б) не изменяется;
 - в) понижается;

- г) может повышаться или понижаться.
- 80. Относительное понижение давления насыщенного пара растворителя над раствором равно:
 - а) массовой доле растворенного вещества;
 - б) массовой доле растворителя;
 - в) мольной доле растворителя;
 - г) мольной доле растворенного вещества.
- 81. Зависимость давления насыщенного пара растворителя над раствором от мольной доли растворенного вещества называется:
 - а) закон Рауля;
 - б) закон Вант-Гоффа;
 - в) закон Нернста;
 - г) закон Сеченова.
- 82. Титр показывает, сколько г вещества содержится в:
 - а) 1 г раствора;
 - б) 1 кг раствора;
 - в) 1 мл раствора;
 - г) 1 л раствора.
- 83. Плазмолиз это:
 - а) разрушение лейкоцитов;
 - б) сморщивание клетки;
 - в) набухание клетки;
 - г) разрушение эритроцитов.
- 84. Что из перечисленного является следствием из закона Рауля:
 - а) растворы кипят при более высокой температуре, чем чистый растворитель;
 - б) растворы кипят при более низкой температуре, чем чистый растворитель;
 - в) растворы замерзают при более высокой температуре, чем чистый растворитель;
 - г) растворы замерзают при более низкой температуре, чем чистый растворитель.
- 85. Температура кипения воды равна 100°C при давлении:
 - a) 760 кПа;
 - б) 776 кПа;
 - в) 1000,3 кПа;
 - г) 101,3 кПа.
- 86. Повышение температуры кипения и понижение температуры замерзания раствора по сравнению с чистым растворителем прямо пропорционально:
 - а) массе растворенного вещества;
 - б) титру растворенного вещества;
 - в) молярной концентрации растворенного вещества;
 - г) моляльной концентрации растворенного вещества.
- 87. В формуле $\Delta t_{\text{кип}} = E \cdot m$ символ «Е» это:
 - а) энергия активации;
 - б) эбуллиометрическая константа;
 - в) криометрическая константа;

- г) теплота кипения.
- 88. Эбуллиометрическая константа показывает:
 - а) на сколько градусов повышается $t_{\text{кип}}$ раствора, полученного при растворении в 1 кг растворителя 1 моля неэлектролита;
 - б) на сколько градусов понижается $t_{\text{зам}}$ раствора, полученного при растворении в 1 кг растворителя 1 моль неэлектролита;
 - в) на сколько градусов понижается $t_{\text{кип}}$ раствора, полученного при растворении в 1 кг растворителя 1 моля неэлектролита;
 - г) на сколько градусов повышается $t_{\text{зам}}$ раствора, полученного при растворении в 1 кг растворителя 1 моль неэлектролита.

89. Криометрическая константа показывает:

- а) на сколько градусов повышается $t_{\text{кип}}$ раствора, полученного при растворении в 1 кг растворителя 1 моля неэлектролита;
- б) на сколько градусов понижается $t_{\text{зам}}$ раствора, полученного при растворении в 1 кг растворителя 1 моль неэлектролита;
- в) на сколько градусов понижается $t_{\text{кип}}$ раствора, полученного при растворении в 1 кг растворителя 1 моля неэлектролита;
- г) на сколько градусов повышается $t_{\text{зам}}$ раствора, полученного при растворении в 1 кг растворителя 1 моль неэлектролита.

90. При одинаковой температуре кипят растворы неэлектролитов:

- а) одинакового объема;
- б) одинаковой массы;
- в) с одинаковой моляльной концентрацией;
- г) с одинаковой массовой долей растворенного вещества.

91. Криоскопический метод – это метод исследования, основанный на:

- а) измерении давления;
- б) измерении электропроводности;
- в) измерении температуры кипения;
- г) измерении температуры замерзания.

92. Эбуллиоскопический метод – это метод исследования, основанный на:

- а) измерении давления;
- б) измерении электропроводности;
- в) измерении температуры кипения;
- г) измерении температуры замерзания.

93. Криоскопический метод используется в химическом анализе для определения:

- а) молекулярной массы вещества:
- б) изотонического коэффициента Вант-Гоффа;
- в) моляльной концентрации всех веществ в растворе;
- г) осмотического давления раствора.

94. Для растворов электролитов осмотическое давление, определенное экспериментально:

- а) всегда больше, чем рассчитанное теоретически;
- б) всегда меньше, чем рассчитанное теоретически;
- в) всегда равно рассчитанному теоретически;
- г) всегда принимает отрицательные значения.

- 95. Для растворов электролитов при расчете осмотического давления, изменения температуры кипения или замерзания используется поправочный коэффициент **i**. Он называется:
 - а) криометрический коэффициент;
 - б) эбуллиометрический коэффициент;
 - в) изотонический коэффициент;
 - г) изоосмотический коэффициент.
- 96. Изотонический коэффициент показывает:
 - а) во сколько раз реальное число частиц растворенного электролита в растворе больше, чем теоретически ожидаемое;
 - б) во сколько раз опытное значение $\Delta t_{\text{кип}}$ раствора электролита больше, чем теоретически рассчитанное;
 - в) во сколько раз опытное значение $P_{\text{осм}}$ раствора электролита больше, чем теоретически рассчитанное;
 - г) во сколько раз растворимость электролита больше, чем неэлектролита.
- 97. Максимальное значение изотонического коэффициента для Na₂SO₄ равно:
 - a) 1;
 - б) 2;
 - в) 3;
 - r) 4.
- 98. Изотонический коэффициент электролита рассчитывается по формуле:
 - a) $i = 1 m(\alpha 1)$;
 - δ) i = 1 + m(α-1);
 - B) $i = 1 \alpha(m-1)$;
 - Γ) $i = 1 + \alpha(m-1)$.
- 99. Максимальное значение изотонического коэффициента для электролита равно:
 - a) числу ионов, которые образуются при полной диссоциации его молекулы или формульной единицы;
 - б) числу атомов, которые образуются при полной диссоциации его молекулы или формульной единицы;
 - в) числу атомов, входящих в состав его молекулы или формульной единицы;
 - г) степени его диссоциации.
- 100. Криометрическая константа для воды равна:
 - а) 5 град/моль;
 - б) 1,86 град/моль;
 - в) 126 град/моль;
 - г) 9,12 град/моль.
- 101. Буферные растворы способны поддерживать постоянное значение рН:
 - а) при добавлении небольших количеств сильной кислоты;
 - б) при добавлении небольших количеств щелочи;
 - в) при разбавлении;
 - г) при нагревании.
- 102. Буферные системы бывают:

- а) кислотные;
- б) основные;
- в) гидридные;
- г) оксидные.

103. Ацетатная буферная система относится к:

- а) кислотным буферным системам;
- б) основным буферным системам;
- в) солевым буферным системам;
- г) оксидным буферным системам.

104. Ацетатный буфер состоит из:

- а) фосфорной кислоты и ацетата натрия;
- б) уксусной кислоты и ацетата натрия;
- в) ацетата натрия и ацетата кальция;
- г) уксусной кислоты и гидрокарбоната натрия.

105. Фосфатная буферная система относится к:

- а) кислотным буферным системам;
- б) основным буферным системам;
- в) комплексным буферным системам;
- г) оксидным буферным системам.

106. К основным буферным системам относятся:

- а) фосфатный буфер;
- б) аммиачный буфер;
- в) этиламиновый буфер;
- г) гидрокарбонатный буфер.

107. Карбонатная буферная система состоит из:

- a) $H_2CO_3 / CO_2 + H_2O_3$;
- б) CO₂ / CO;
- в) NaHCO₃ / Na₂CO₃;
- r) NaHCO₃ / KHCO₃.

108. Любая кислотная буферная система характеризуется:

- а) общей кислотностью;
- б) активной кислотностью;
- в) потенциальной кислотностью;
- г) промежуточной кислотностью.

109. Любая основная буферная система характеризуется:

- а) общей щелочностью;
- б) активной щелочностью;
- в) потенциальной щелочностью;
- г) промежуточной щелочностью.

110. В фосфатной буферной системе NaH₂PO₄/Na₂HPO₄:

- а) $H_2PO_4^-$ слабая кислота, HPO_4^{2-} сопряженное основание;
- б) $H_2PO_4^-$ сильная кислота, HPO_4^{2-} сопряженное основание;
- в) HPO_4^{2-} слабая кислота, $H_2PO_4^-$ сопряженное основание;

- г) HPO_4^{2-} сильная кислота, $H_2PO_4^-$ сопряженное основание.
- 111. Водородный показатель это:
 - a) $\lg C_{H}^+$;
 - $6) -lg C_{H}^{+};$
 - в) $lg C_{OH}$;
 - Γ) -lg C_{OH}
- 112. Уравнение ионного произведения воды это:
 - a) $C_{H^{+}} \cdot C_{OH^{-}} / C_{H2O} = 1.8 \cdot 10^{-16}$;
 - 6) $C_{H3O}^+ \cdot C_{OH}^- = 10^{-14}$;
 - $^{'}$ $lg C_{H}^{+} \cdot (-lg C_{OH}^{-}) = 14;$
 - Γ) pH + pOH = 14.
- 113. Ионное произведение воды при $t = 20^{\circ}$ C равно:
 - a) 10^7 ;
 - б) 10¹⁴;
 - в) 10⁻⁷;
 - г) 10⁻¹⁴.
- 114. Гидроксильный показатель это:
 - a) $\lg C_{H}^+$;
 - σ) –lg C_H^+ ;
 - в) lg C_{OH}-;
 - Γ) $-lg C_{OH}$.
- 115. Сумма гидроксильного и водородного показателя в водных растворах составляет:
 - a) 7;
 - б) 10⁻⁷;
 - в) 14;
 - г) 10⁻¹⁴.
- 116. Водородный показатель возрастает при:
 - а) увеличении концентрации ионов Н⁺;
 - б) уменьшении концентрации ионов Н⁺;
 - в) увеличении концентрации ионов ОН-;
 - г) уменьшении концентрации ионов ОН--
- 117. При $C_{OH}^- < C_{H}^+$ раствор имеет реакцию:
 - а) щелочную;
 - б) кислую;
 - в) нейтральную;
 - г) солёную.
- 118. При $C_{OH}^- > C_{H}^+$:
 - a) pH > 7;
 - б) pH < 7;
 - B) pH = 7;
 - Γ) pH = 0.
- 119. При рН > 7 среда раствора называется:
 - а) кислой;

- б) нейтральной;
- в) щелочной;
- г) соленой.
- 120. При pH < 7 среда раствора называется:
 - а) кислой;
 - б) нейтральной;
 - в) щелочной;
 - г) соленой.
- 121. При добавлении сильной кислоты к кислотной буферной системе её буферное действие обеспечивается взаимодействием с:
 - а) катионами водорода;
 - б) ионами ОН-;
 - в) анионами соли;
 - г) катионами соли.
- 122. При добавлении к ацетатной буферной системе небольшого количества щелочи рН изменяется незначительно, т.к. :
 - а) сильное основание замещается на эквивалентное количество слабого основания;
 - б) сильное основание замещается на эквивалентное количество слабой кислоты;
 - в) сильное основание замещается на эквивалентное количество нейтральной соли;
 - г) сильное основание замещается на эквивалентное количество сильной кислоты.
- 123. Буферный раствор сохраняет своё буферное действие более длительное время при:
 - а) попеременном добавлении к нему сильной кислоты и щелочи в небольших количествах;
 - б) попеременном добавлении к нему сильной кислоты и разбавлении;
 - в) попеременном добавлении к нему щелочи и разбавлении;
 - г) только при разбавлении.
- 124. Какие из схем правильно отражают механизм действия фосфатного (NaH₂PO₄/ Na₂HPO₄) буфера в организме:
 - a) $H_2PO_4^- + H^+ \rightarrow H_3PO_4$;
 - 6) $HPO_4^{2-} + H^+ \rightarrow H_2PO_4^-$;
 - B) $H_2PO_4^- + OH^- \rightarrow HPO_4^{2-} + H_2O$;
 - Γ) HPO₄²⁻ + OH⁻ \rightarrow PO₄³⁻ + H₂O.
- 125. При добавлении соляной кислоты к аммиачному буферному раствору произойдет взаимодействие HCl c:
 - a) NH₃ (NH₃·H₂O);
 - δ) NH₄Cl;
 - в) H₂O;
 - r) NH₄⁺.
- 126. Значение рН кислотной буферной системы зависит от:
 - а) величины константы кислотности кислоты;
 - б) степени диссоциации кислоты в растворе;
 - в) соотношения концентраций кислоты и соли;
 - г) концентрации только одного из компонентов буфера

- 127. Значение рН для кислотного буфера рассчитывается по уравнению:
 - а) $pH = pK_a \lg C_{\text{осн}}/C_{\text{соли}}$;
 - б) $pH = pK_a \lg C_{\kappa\text{-ты}}/C_{\text{соли}};$
 - B) $pH = pK_a \lg C_{K-TIJ}/C_{OCH}$;
 - Γ) $pH = pK_b lg_{C_{K-Tbl}}/C_{coли}$.
- 128. Значение рОН для основного буфера рассчитывается по уравнению:
 - а) $pOH = pK_a lg C_{och}/C_{coли}$;
 - б) $pOH = pK_a + lg C_{\kappa-ты}/C_{coли}$;
 - B) $pOH = pK_a lg C_{K-Tbl}/C_{OCH}$;
 - Γ) $pOH = pK_b lg C_{och}/C_{coли}$.
- 129. Значение рН для основного буфера рассчитывается по формуле:
 - а) $pH = pK_a \lg C_{och}/C_{coли}$;
 - б) $pH = 14 pK_b + lg C_{och}/C_{coли}$;
 - B) $pH = 14 + pK_a \lg C_{K-TIJ}/C_{OCH}$;
 - Γ) $pH = pK_b lg C_{och}/C_{coли}$.
- 130. Водородный показатель буфера типа слабая кислота и её анион численно равен рК кислотности при:
 - а) концентрации кислоты в буферной системе равной концентрации соли;
 - б) концентрации кислоты примерно в 10 раз больше концентрации соли;
 - в) никогда не равен;
 - г) если концентрации кислоты и соли равны 1 моль/л.
- 131. Значение рН основного буфера зависит от:
 - а) значения константы диссоциации слабого основания;
 - б) концентрации только одного из компонентов буфера;
 - в) значений степени диссоциации слабого основания;
 - г) соотношения концентраций компонентов буфера.
- 132. рН буферных систем рассчитывается по уравнению:
 - а) Дерягина-Ландау-Фервея-Овербека;
 - б) Гендерсона-Гассельбаха;
 - в) Вант-Гоффа;
 - г) Генри-Дальтона.
- 133. Для используемых на практике буферных систем значения рН лежат в интервале:
 - a) pK + 10;
 - б) рК 10;
 - B) $pK \pm 1$;
 - Γ) pK \pm 10.
- 134. Уравнение Гендерсона-Гассельбаха не рекомендуется использовать в случае:
 - а) если pK_a для кислоты <3;
 - б) если pK_a для кислоты >11;
 - в) если pK_a для кислоты = 7;
 - г) если pK_a для кислоты < 5.
- 135. Буферная ёмкость (В) это способность буферной системы:

- а) поддерживать постоянство рН при разбавлении буфера;
- б) противодействовать смещению рН при увеличении соотношения концентраций компонентов буфера;
- в) противодействовать смещению рН при добавлении небольших количеств кислоты или щёлочи;
- г) поддерживать постоянство рH, при изменении to.

136. Буферная емкость по кислоте:

- а) равна химическому количеству эквивалентов кислоты, которое необходимо добавить к 1 л буферной системы, чтобы увеличить её рH на 1;
- б) равна химическому количеству эквивалентов кислоты, которое необходимо добавить к 1 л буферной системы, чтобы уменьшить её рН на 1;
- в) равна химическому количеству эквивалентов кислоты, которое необходимо добавить к 1 л буферной системы, чтобы увеличить её рН в 10 раз;
- г) равна химическому количеству эквивалентов щелочи, которое необходимо добавить к 1 л буферной системы, чтобы увеличить её рН на 1.

137. Буферная емкость по основанию:

- а) равна химическому количеству эквивалентов щелочи, которое необходимо добавить к 1 л буферной системы, чтобы увеличить её рН на 1;
- б) равна химическому количеству эквивалентов щелочи, которое необходимо добавить к 1 л буферной системы, чтобы уменьшить её рН на 1;
- в) равна химическому количеству эквивалентов щелочи, которое необходимо добавить к 1 л буферной системы, чтобы увеличить её рН в 10 раз;
- г) равна химическому количеству эквивалентов кислоты, которое необходимо добавить к 1 л буферной системы, чтобы увеличить её рH на 1.

138. Буферная емкость зависит:

- а) только от концентрации слабой кислоты или основания;
- б) только от концентрации солевой компоненты буфера;
- в) от концентраций обоих компонентов буферной системы;
- г) от соотношения компонентов буферной системы.

139. Буферная емкость ацетатного буфера по кислоте зависит от:

- а) концентрации солевой компоненты;
- б) концентрации кислотной компоненты;
- в) концентрации СН₃СООН;
- г) концентрации CH₃COONa.
- 140. Буферная емкость аммиачного буфера по основанию будет больше, чем по кислоте, в случае, если:
 - а) содержание NH₄Cl > чем NH₃;
 - б) содержание $NH_3 >$ чем NH_4Cl ;
 - в) содержание солевой компоненты больше, чем слабого основания;
 - г) содержание слабого основания больше, чем солевой компоненты.

141. Буферная ёмкость кислотного буфера по кислоте повышается при:

- а) одновременном увеличении концентрации кислоты и уменьшении концентрации соли:
- б) одновременном уменьшении концентрации кислоты и увеличении концентрации соли:
- в) уменьшении концентрации кислоты;

- г) увеличении концентрации соли.
- 142. Какова ёмкость буферного раствора по щелочи, если при добавлении к 1 литру этого буфера 2 г NaOH показатель рН изменился от 6,8 до 7,3 ?
 - a) 0,1;
 - б) 0,05;
 - в) 2;
 - r) 0,2.
- 143. Показатель (рОН) крови в норме колеблется в пределах:
 - a) 7,36-7,40;
 - 6) 6,64 6,60;
 - B) $10^{-7.36} 10^{-7.40}$;
 - Γ) 1 1,5.
- 144. Какова ёмкость буферного раствора по кислоте, если при добавлении к 1 литру этого буфера 1,46 г HCl показатель рН изменился от 7,2 до 6,7?
 - a) 0,004;
 - б) 0,08;
 - в) 0,04;
 - г) 0,008.
- 145. С каким из компонентов гидрокарбонатного буфера взаимодействуют ионы H⁺ при выделении в кровь больших количеств кислых продуктов?
 - a) CO₂;
 - б) H₂O;
 - в) H₂CO₃;
 - г) HCO₃--
- 146. Какова ёмкость буферного раствора по кислоте, если при добавлении к 1 литру этого буфера 2,19 г HCl показатель pH изменился от 6,2 до 7,0 ?
 - a) 0,075;
 - б) 0.15;
 - в) 0,06;
 - r) 0,8.
- 147. Состояние организма, при котором рН крови снижается относительно нормы, называется:
 - а) ацидоз;
 - б) алкалоз;
 - в) гемостаз;
 - г) изоосмия.
- 148. Состояние организма, при котором рН крови повышается относительно нормы, называется:
 - а) ацидоз;
 - б) алкалоз;
 - в) гемостаз;
 - г) изоосмия.
- 149. Изменение рН крови до каких значений приводит к летальному исходу:
 - а) ниже 6,8;

- б) ниже 7,36;
- в) выше 8;
- г) выше 7,4.

150. Дыхательный ацидоз возникает в результате:

- а) гиповентиляции легких;
- б) увеличения содержания СО2 в артериальной крови;
- в) гипервентиляции легких;
- г) уменьшения содержания СО2 в артериальной крови.

151. При накоплении в крови и тканях органических кислот возникает:

- а) дыхательный ацидоз;
- б) дыхательный алкалоз;
- в) метаболический ацидоз;
- г) метаболический алкалоз.

152. Согласно теории Аррениуса кислотой является:

- а) вещество, диссоциирующее с образованием ионов Н+;
- б) вещество, диссоциирующее с образованием ионов ОН-;
- в) вещество, способное присоединять протон;
- г) вещество, способное присоединять пару электронов.

153. Согласно теории Аррениуса основанием является:

- а) вещество, диссоциирующее с образованием ионов Н⁺;
- б) вещество, диссоциирующее с образованием ионов ОН-;
- в) вещество, способное присоединять протон;
- г) вещество, способное присоединять пару электронов.

154. Протолитическая теория кислот и оснований была сформулирована:

- а) Бренстедом;
- б) Лоури;
- в) Аррениусом;
- г) Оствальдом.

155. Согласно протолитической теории кислотой является:

- а) вещество, диссоциирующее с образованием ионов Н⁺;
- б) вещество, способное отдавать протон;
- в) вещество, способное присоединять протон;
- г) вещество, способное присоединять пару электронов.

156. Согласно протолитической теории основанием является:

- а) вещество, диссоциирующее с образованием ионов Н⁺;
- б) вещество, диссоциирующее с образованием ионов ОН-;
- в) вещество, способное присоединять протон;
- г) вещество, способное отдавать протон.

157. Кислоты и основания по теории Бренстеда-Лоури могут быть:

- а) катионные;
- б) анионные;
- в) нейтральные;
- г) комплексные.

158. К анионным кислотам относится: a) HCl; б) NH ₃ ; в) HSO ₄ ⁻ ; г) NO ₃ ⁻
159. К анионным основаниям относится: а) HCl; б) NH ₃ ; в) HSO ₄ ⁻ ; г) NO ₃ ⁻
160. Растворители с ярко выраженным сродством к ионам H ⁺ называются: а) апротонные; б) амфипротные; в) протофильные; г) протогенные.
 161. Растворители, обладающие гораздо большей способностью к отдаче протона, чем к его присоединению, называются: а) апротонные; б) амфипротные; в) протофильные; г) протогенные.
162. Растворители, обладающие сопоставимой способностью к присоединению или отдач протона, называются: а) апротонные; б) амфипротные; в) протофильные; г) протогенные.
163. Инертные растворители иначе называются:а) апротонные;

164. Протофильные растворители:

б) амфипротные; в) протофильные; г) протогенные.

- а) всегда увеличивают силу кислот;
- б) затрудняют диссоциацию кислот;
- в) не влияют на силу кислот;
- г) облегчают ионизацию оснований.
- 165. Протогенные растворители:
 - а) всегда увеличивают силу кислот;
 - б) затрудняют диссоциацию кислот;
 - в) не влияют на силу кислот;
 - г) облегчают ионизацию оснований.

166. Выдвинутая Льюисом в 1923 году теория кислот и оснований получила название:

- а) теория электролитической диссоциации;
- б) протолитическая теория кислот и оснований;
- в) водородная теория кислот и оснований;
- г) электронная теория кислот и оснований.

167. Согласно теории Льюиса кислотой является:

- а) донор электронной пары;
- б) акцептор электронной пары;
- в) донор протона;
- г) акцептор протона.

168. Согласно теории Льюиса основанием является:

- а) донор электронной пары;
- б) акцептор электронной пары;
- в) донор протона;
- г) акцептор протона.

169. К кислотам Льюиса можно отнести:

- a) AlCl₃;
- б) BF₃;
- B) Cu^{2+} ;
- r) NH_{3.}

170. К основаниям Льюиса можно отнести:

- a) AlCl₃;
- б) BF₃;
- в) NH₃;
- г) OH--

171. Электролитами называются:

- а) вещества, растворы и расплавы которых проводят электрический ток;
- б) вещества, растворы и расплавы которых не проводят электрический ток;
- в) вещества, диссоциирующие с образованием ионов Н⁺;
- г) вещества, способные присоединять пару электронов.

172. Неэлектролитами называются:

- а) вещества, растворы и расплавы которых проводят электрический ток;
- б) вещества, растворы и расплавы которых не проводят электрический ток;
- в) вещества, диссоциирующие с образованием ионов Н⁺;
- г) вещества, способные присоединять пару электронов.

173. К электролитам относятся:

- а) соединения, образованные ионными связями;
- б) соединения, образованные полярными ковалентными связями;
- в) соединения, образованные малополярными ковалентными связями;
- г) соединения, образованные неполярными ковалентными связями.

174. К неэлектролитам относятся:

а) соединения, образованные ионными связями;

- б) соединения, образованные полярными ковалентными связями;
- в) соединения, образованные малополярными ковалентными связями;
- г) соединения, образованные неполярными ковалентными связями.

175. Автором теории электролитической диссоциации является:

- а) Бренстед;
- б) Лоури;
- в) Аррениус;
- г) Льюис.

176. Сильные электролиты – это вещества:

- а) которые в водных растворах полностью распадаются на ионы;
- б) которые в водных растворах частично распадаются на ионы;
- в) имеющие атомную кристаллическую решетку;
- г) имеющие металлическую кристаллическую решетку.

177. Слабые электролиты – это вещества:

- а) которые в водных растворах полностью распадаются на ионы;
- б) которые в водных растворах частично распадаются на ионы;
- в) имеющие атомную кристаллическую решетку;
- г) газы, в молекулах которых атомы связаны неполярными ковалентными связями.

178. Степень электролитической диссоциации – это:

- а) отношение общего числа молекул вещества в растворе к числу его молекул, которые распались на ионы;
- б) отношение числа распавшихся на ионы молекул вещества к общему числу его молекул в растворе;
- в) отношение химического количества распавшихся на ионы молекул электролита к общему химическому количеству молекул электролита в растворе;
- г) отношение общего химического количества молекул электролита в растворе к химическому количеству его молекул, которые распались на ионы.

179. Степень электролитической диссоциации обозначается греческой буквой:

- a) α ;
- δ) β;
- B) γ;
- η.

180. Степень диссоциации слабых электролитов зависит от:

- а) цвета раствора;
- б) температуры кипения растворителя;
- в) температуры раствора;
- г) концентрации раствора.

181. При ступенчатой диссоциации электролита величина константы диссоциации для суммарного уравнения связана с константами диссоциации отдельных стадий соотношением:

- a) $K_{\text{cymm}} = K_1 + K_2 + K_3 + ... + K_n$;
- $6) \quad \mathbf{K}_{\text{cymm}} = \mathbf{K}_1 \cdot \mathbf{K}_2 \cdot \mathbf{K}_3 \cdot \ldots \cdot \mathbf{K}_n;$
- B) $K_{\text{CVMM}} = (K_1 + K_2)/K_3$;
- Γ) $K_{\text{CVMM}} = K_1 + K_2/2 + K_3/3 + \dots + K_n/n$.

 182. Диссоциация CH₃COOH в растворе подавляется при внесении в него: а) CH₃COONa; б) CH₃CH₂COONa; в) HCl; г) NaOH.
183. Образующиеся при диссоциации электролита положительно заряженные частице называются: а) протоны; б) катионы; в) анионы; г) нейтроны.
184. Образующиеся при диссоциации электролита отрицательно заряженные частици называются: а) протоны; б) катионы; в) анионы; г) нейтроны.
185. При пропускании через раствор электролита электрического тока положительно заряженные ионы электролита двигаются: а) хаотически; б) к катоду; в) к аноду; г) не двигаются.
186. Электролиты являются проводниками: а) первого рода; б) второго рода; в) третьего рода; г) четвертого рода.
187. Процесс электролитической диссоциации обратим: а) всегда; б) при повышенной температуре; в) только в кислой среде; г) только в щелочной среде.
188. Сильными электролитами являются: a) H ₂ S; б) HCl; в) КОН; г) СН ₃ СООН.
189. Слабыми электролитами являются: а) H ₂ S; б) HCl; в) KOH; г) CH ₃ COOH.

- 190. Вещества, в которых частицы связаны различными видами химической связи, распадаются на ионы:
 - а) по всем связям одновременно;
 - б) сначала по ковалентным полярным связям, потом по ионным;
 - в) сначала по ионным связям, потом по ковалентным полярным;
 - г) не распадаются на ионы.
- 191. Степень диссоциации слабого электролита увеличивается при:
 - а) повышении температуры;
 - б) понижении температуры;
 - в) уменьшении концентрации раствора;
 - г) увеличении концентрации раствора.
- 192. Степень диссоциации слабого электролита уменьшается при:
 - а) повышении температуры;
 - б) понижении температуры;
 - в) уменьшении концентрации раствора;
 - г) увеличении концентрации раствора.
- 193. При ступенчатой диссоциации электролита константа диссоциации по каждой последующей ступени:
 - а) увеличивается;
 - б) уменьшается;
 - в) не изменяется;
 - г) изменяется различным образом у разных электролитов.
- 194. Закон разбавления Оствальда:
 - a) $K_{\text{дисс}} = (C \cdot \alpha^2) / (1-\alpha)$;
 - б) $K_{\text{дисс}} = (1-\alpha) / (C \cdot \alpha^2)$;
 - B) $K_{\text{дисс}} = (C \cdot \alpha) 1$;
 - Γ) $K_{\text{MMCC}} = 1 (C \cdot \alpha)$.
- 195. Активность это:
 - а) способность вещества к отдаче протонов;
 - б) отношение числа распавшихся на ионы молекул электролита к общему числу его молекул растворе;
 - в) эффективная концентрация ионов электролита, соответственно которой они количественно проявляют себя в растворах;
 - г) произведение молярной концентрации иона на коэффициент активности.
- 196. В разбавленных растворах коэффициент активности иона зависит от:
 - а) заряда иона;
 - б) ионной силы раствора;
 - в) вязкости среды;
 - г) температуры кипения растворителя.
- 197. Ионная сила плазмы крови человека равна:
 - a) 0,15;
 - б) 1,5;
 - в) 15;

- r) 150.
- 198. Самым слабым из перечисленных электролитов является:
 - a) CH₃COOH ($K_{\text{дисс}} = 1.85 \cdot 10^{-5}$);
 - 6) HCN $(K_{\text{MMCC}} = 4.8 \cdot 10^{-10})$;
 - B) HCOOH ($K_{\text{дисс}} = 1.8 \cdot {}^{10-4}$);
 - Γ) H_2S ($K_{\text{дисс}} = 6 \cdot 10^{-8}$).
- 199. Самым сильным из перечисленных электролитов является:
 - a) $CH_3COOH (K_{\text{дисс}} = 1,85 . 10^{-5});$

 - 6) HCN ($K_{дисс} = 4,8 \cdot 10^{-10}$); в) HCOOH ($K_{дисс} = 1,8 \cdot 10^{-4}$); г) H₂S ($K_{1дисс} = 6 \cdot 10^{-8}$).
- 200. При пропускании через раствор электролита электрического тока отрицательно заряженные ионы электролита двигаются:
 - а) хаотически;
 - б) к катоду;
 - в) к аноду;
 - г) не двигаются.

Ответы Растворы. Электролитическая диссоциация. Буферные растворы

	40	1 0-	l	1.00
1. a	48. в	95. в	142. a	189. а,г
2. б	49. г	96. а,б,в	143. б	190. в
3. б	50. б	97. в	144. б	191. а,в
4. a	51. б	98. г	145. г	192. б, г
5. г	52. a	99. a	146. a	193. б
6. в	53. a	100. б	147. a	194. a
7. в,г	54. г	101. а,б,в	148. б	195. в,г
8. a	55. г	102. а,б	149. а,в	196. а,б
9. б	56. б	103. a	150. а,б	197. a
10. в	57. б,г	104. б	151. в	198. б
11. в,г	58. a	105. a	152. a	199. в
12. а,б	59. а,в	106. б,в	153. б	200. в
13. б,в	60. в	107. в	154. а,б	
14. a	61. в	108. а,б,в	155. б	
15. г	62. a	109. а,б,в	156. в	
16. в	63. б	110. a	157. а,б,в	
17. a	64. б,в	111. б	158. в	
18. б	65. б	112. б	159. в,г	
19. б	66. в	113. г	160. в	
20. в,г	67. б	114. г	161. г	
21. а,б	68. г	115. в	162. б	
22. б	69. a	116. б,в	163. a	
23. в	70. a	117. б	164. a	
24. a	71. г	118. a	165. б,г	
25. б	72. в	119. в	166. г	
26. в	73. a	120. a	167. б	
27. a	74. б	121. в	168. a	
28. б	75. а,б	122. а,в	169. а,б,в	
29. в,г	76. г	123. a	170. в,г	
30. a	77. г	124. б,в	171. a	
31. г	78. a	125. a	172. б	
32. б	79. в	126. а,в	173. a,6	
33. в	80. г	127. f	174. в,г	
34. г	81. a	128. г	175. в	
35. б	82. в	129. б	176. a	
36. a	83. б	130. а,г	177. б	
37. a	84. а,г	131. а,г	178. б,в	
38. г	85. г	132. 6	179. a	
39. б,в	86. г	133. в	180. в,г	
40. a	87. б	134. а,б	181. б	
41. б	88. a	135. в	182. а,в	
42. в,г	89. б	136. б	183. б	
43. f	90. в	130. 0 137. a	184. в	
43. 0 44. г	90. в 91. г	137. а	185. б	
44. 1 45. в	91. I 92. в	139. а,г	186. б	
45. в 46. в		139. a,1 140. a,B	180. 0 187. a	
40. в 47. а,б,г	93. а,б,в,г 94. а	140. а,в		
+1. a,U,1	7 4 . a	141. 0,1	188. б,в	1

Тесты к теме: Комплексные соединения

- 1. В роли комплексообразователя могут выступать:
 - а) атом Н;
 - б) ион Н⁻;
 - в) атом Fe;
 - Γ) ион Fe^{2+} .
- 2. При образовании координационной связи комплексообразователь выступает в роли:
 - а) донора электронной пары;
 - б) акцептора электронной пары;
 - в) носителя отрицательного заряда;
 - г) источника неспаренных электронов.
- 3. При образовании координационной связи лиганд выступает в роли:
 - а) донора электронной пары;
 - б) акцептора электронной пары;
 - в) носителя отрицательного заряда;
 - г) источника неспаренных электронов.
- 4. Дентантность лиганда это:
 - а) число двухэлектронных о-связей, образованных им с комплексообразователем;
 - б) численное значение величины его заряда;
 - в) общее число атомов химических элементов, входящих в его состав;
 - г) число атомов, выделяемых им для образования координационных связей с комплексообразователем.
- 5. Монодентантными лигандами являются молекулы:
 - а) этилендиамина;
 - б) этилендиаминтетрауксусной кислоты;
 - в) глицина;
 - г) аммиака.
- 6. Бидентантными лигандами являются:
 - а) гидроксильные ионы;
 - б) цианид-ионы;
 - в) оксалат-ионы;
 - г) сульфат-ионы.
- 7. Координационное число это:
 - а) количество вакантных орбиталей, расположенных на внешнем электронном слое комплексообразователя;
 - б) общее число двухэлектронных связей, которые лиганды образуют с комплексообразователем;
 - в) число лигандов во внутренней сфере комплекса;
 - г) произведение числа лигандов, связанных с комплексообразователем, на их дентантность.
- 8. Координационное число в комплексных соединениях:
 - а) может принимать любое целочисленное значение;
 - б) варьирует в пределах от 1 до 12;

- в) не может быть больше числа лигандов во внутренней сфере;
- г) может быть больше числа лигандов во внутренней сфере.
- 9. Во внешней сфере комплексного соединения могут присутствовать:
 - а) нейтральные молекулы;
 - б) положительно заряженные ионы;
 - в) отрицательно заряженные ионы;
 - г) только положительно заряженные ионы.
- 10. Заряд внешней координационной сферы:
 - а) имеет тот же знак, что и заряд комплексного иона;
 - б) совпадает с зарядом внутренней сферы как по знаку, так и по абсолютной величине;
 - в) совпадает с зарядом внутренней сферы по абсолютной величине, но противоположен по знаку;
 - г) всегда равен нулю.
- 11. Заряд внутренней координационной сферы:
 - а) всегда равен нулю;
 - б) может быть равен нулю;
 - в) равен алгебраической сумме заряда комплексообразователя и лигандов;
 - г) по абсолютной величине всегда больше заряда внешней сферы.
- 12. Ионы внешней сферы:
 - а) непосредственно связаны с комплексообразователем;
 - б) непосредственно не связаны с комплексообразователем;
 - в) образуют с комплексообразователем координационные связи;
 - г) связаны с внутренней сферой за счет электростатического взаимодействия.
- 13. Катионными комплексами являются:
 - a) Na[Al(OH)₄];
 - δ) $K_3[Fe(CN)_6]$;
 - в) [Co(NH₃)₆]Cl₃;
 - Γ) [Co(NH₃)₃(NO₂)₃].
- 14. Анионными комплексами являются:
 - a) $Na_3[Al(OH)_6]$;
 - δ) [Ag(NH₃)₂]Cl;
 - в) K₄[Fe(CN)₆];
 - г) Na₂[Cu(OH)₄].
- 15. Нейтральными комплексами являются:
 - a) $[Fe(H_2O)_6]Cl_3$;
 - б) [Fe(CO)₅];
 - в) [Fe(NH₃)₄Cl₂]Cl;
 - Γ) Na₂[Zn(OH)₄].
- 16. Аквакомплексами являются:
 - a) $[Co(H_2O)_6]SO_4;$
 - δ) Na₂[Zn(OH)₄];
 - в) Na[AlH₄];
 - г) NaAlO₂.

- 17. Гидроксокомплексами являются:
 - a) Li[BH₄];
 - б) Na₃[Al(OH)₆];
 - в) [Cu(H₂O)₄]Cl₂;
 - Γ) [Ag(NH₃)₂]Cl.
- 18. Ацидокомплексами являются:
 - a) $K_4[Fe(CN)_6]$;
 - б) [Cu(NH₃)₄]Cl₂;
 - в) $Na_3[Fe(C_2O_4)_3];$
 - Γ) K₃[Co(NO₂)₆].
- 19. Аммиакатами являются комплексы:
 - a) $Na_3[Co(NO_2)_6]$;
 - δ) K[Ag(CN)₂];
 - в) [Cu(NH₃)₄]Cl₂;
 - Γ) Na₂[Cu(OH)₄].
- 20. Смешанными комплексами являются:
 - a) $Na[Co(NH_3)_4Cl_2]$;
 - б) Na[Al(OH)₄(H₂O)₂];
 - B) $[Ag(NH_3)_2]Cl;$
 - Γ) Na₃[Fe(CN)₆].
- 21. Комплексное соединение Na₃[Al(OH)₆] является:
 - а) одноядерным;
 - б) анионным;
 - в) гидроксокомплексом;
 - г) катионным.
- 22. Комплексное соединение [Cu(NH₃)₂]SO₄ является:
 - а) многоядерным;
 - б) аммиакатом;
 - в) катионным;
 - г) нейтральным.
- 23. Комплексное соединение [Fe(CO)₅] является:
 - а) одноядерным;
 - б) нейтральным;
 - в) катионным;
 - г) анионным.
- 24. Комплексное соединение $Na[Al(H_2O)_2(OH)_4]$ является:
 - а) многоядерным;
 - б) комплексом смешанного типа;
 - в) ацидокомплексом;
 - г) анионным.
- 25. Комплексное соединение $[Fe(H_2O)_6]SO_4$ является:
 - а) одноядерным;
 - б) гидроксокомплексом;

- в) аквакомплексом;
- г) катионным.
- 26. Укажите правильное название комплексного соединения [Ag(NH₃)₂]Cl:
 - а) диаминоаргентата (I) хлорид;
 - б) хлорид диаммиакат серебра (I);
 - в) хлорид диамминсеребра (I);
 - г) хлородиамминоаргентат (I).
- 27. Укажите правильное название комплексного соединения K₄[Fe(CN)₆]:
 - а) тетракалийгексацианид железа (II);
 - б) гексацианоферрат (II) калия;
 - в) гексацианидожелеза (II) калий;
 - г) гексацианидоферрат (II) калия.
- 28. Укажите правильное название комплексного соединения Na[Cr(H₂O)₂F₄]:
 - а) диакватетрафторохромат(III) натрия;
 - б) тетрафтородиаквахромат (III) натрия;
 - в) тетрафтородигидроксохромат (III) натрия;
 - г) дигидроксотетрафторонатрийхромат (III).
- 29. Укажите правильное название комплексного соединения [Co(NH₃)₃Cl₃]:
 - а) трихлоротриамминкобальт (III);
 - б) триамминотрихлорокобальтат (III);
 - в) трихлоротриаммиакат кобальта (III);
 - г) трихлоридтриамминокобальт (III).
- 30. Укажите правильное название комплексного соединения [Al(H₂O)₅OH]SO₄
 - а) гидридопентааквасульфат алюминия;
 - б) сульфат пентааквагидридоалюмината;
 - в) сульфат гидроксопентаакваалюминия;
 - г) пентааквагидроксоалюмината сульфат.

Тесты к теме: Скорость химических реакций

- 1. Химмическая кинетика раздел физической химии, изучающий:
 - а) принципиальную возможность самопроизвольного протекания химического процесса в том или ином направлении;
 - б) тепловые эффекты химических реакций;
 - в) скорость протекания химических реакций во времени, факторы, влияющих на её величину;
 - г) возможный механизм химических реакций с учётом строения молекул участвующих в них веществ.
- 2. Скорость гомогенной химической реакции измеряется в:
 - а) моль/с;
 - б) моль/ л·с;
 - в) моль·с/л;
 - Γ) моль/ $M^2 \cdot c$.

- 3. Скорость гетерогенной химической реакции измеряется в:
 - а) моль/кг-с;
 - б) моль/ $M^2 \cdot c$;
 - в) моль· M^2/c ;
 - г) моль/м·с.
- 4. При увеличении концентрации вещества A в 3 раза скорость химической реакции $2A_{(r)} + B_{(r)} = C$ возрастет в:
 - a) 3 pasa;
 - б) 6 раз;
 - в) 8 paз;
 - г) 9 paз.
- 5. При увеличении давления в 2 раза скорость химической реакции $2A_{(r)} + B_{(r)} = C$ возрастет в
 - a) 2 pasa;
 - б) 4 раза;
 - в) 6 pa3;
 - г) 8 раз.
- 6. Во сколько раз нужно увеличить давление, чтобы скорость химической реакции $2A_{(r)} + B_{(r)} = C$ возросла в 1000 раз:
 - a) в 10 раз;
 - б) в 20 раз;
 - в) в 50 раз;
 - г) в 100 раз.
- 7. Скорость гомогенной химической реакции, протекающей в водном растворе, зависит от:
 - а) концентрации исходных веществ;
 - б) температуры раствора;
 - в) давления над раствором;
 - г) наличия катализатора.
- 8. Скорость гетерогенной химической реакции, протекающей между твердым веществом и жидким раствором, зависит от:
 - а) площади поверхности твердого вещества;
 - б) концентрации раствора;
 - в) температуры;
 - г) давления над раствором.
- 9. Средняя скорость гомогенной химической реакции измеряется по изменению концентрации:
 - а) только одного из исходных веществ;
 - б) только одного из конечных веществ;
 - в) любого из исходных или конечных веществ;
 - г) исходного и конечного вещества одновременно.
- 10. При протекании большинства необратимых химических реакций их скорость в результате расходования исходных веществ:
 - а) постоянно возрастает;
 - б) постоянно уменьшается;

- в) сперва возрастает, а затем уменьшается;
- г) сперва уменьшается, а затем возрастает.

11. Истинная или мгновенная скорость химической реакции, согласно закона действующих масс, пропорциональна:

- а) произведению молярных концентраций всех исходных веществ, независимо от их агрегатного состояния;
- б) произведению молярных концентраций только твердых веществ;
- в) произведению молярных концентраций веществ газообразных и растворенных в жидкой фазе;
- г) произведению молярных концентраций только газообразных веществ.

12. Константа скорости химической реакции – это:

- а) скорость реакции через единицу времени после ее начала;
- б) скорость реакции в тот момент, когда исходные вещества расходовались на 50%;
- в) скорость реакции в тот момент, когда концентрации каждого из исходных веществ равны 1 моль/дм^3 :
- г) скорость реакции в начальный момент времени.

13. Увеличение давления в реакционной системе:

- а) всегда приводит к возрастанию скорости химической реакции;
- б) всегда приводит к уменьшению скорости химической реакции;
- в) повышает скорость реакции только в том случае, если одно или несколько исходных веществ находятся в газообразном состоянии;
- г) не влияет на скорость любой химической реакции.

14. Скорость простых реакций количественно определяется с помощью:

- а) принципа Ле Шателье;
- б) температурного коэффициента Вант Гоффа;
- в) принципа Паули;
- г) закона действующих масс.

15. Простой называется:

- а) реакция, в которой все исходные вещества являются простыми;
- б) реакция, протекающая в одну стадию;
- в) реакция, протекающая в несколько последовательных стадий;
- г) реакция, приводящая к образованию простых веществ.

16. В элементарном акте простой реакции могут принимать участие:

- а) две молекулы;
- б) три молекулы;
- в) пять молекул;
- г) неограниченное число молекул.

17. На величину скорости гетерогенной реакции оказывает влияние:

- а) концентрация всех исходных веществ, независимо от их агрегатного состояния;
- б) площадь поверхности раздела между веществами, участвующими в химической реакции и отличающимися друг от друга агрегатным состоянием;
- в) наличие в реакционной смеси катализатора;
- г) только концентрация газообразных веществ и веществ, находящихся в растворенном виде.

- 18. В реакции, протекающей по схеме $2A_{(r)} + B_{(r)} \rightarrow C$ концентрацию вещества A увеличили в 3 раза, а концентрацию вещества B уменьшили в 6 раз. Скорость реакции при этом изменилась следующим образом:
 - а) уменьшилась в 2 раза;
 - б) уменьшилась в 3 раза;
 - в) увеличилась в 1,5 раза;
 - г) увеличилась в 2,5 раза.
- 19. Через 4 секунды после начала реакции $2\text{CO+O}_2=2\text{CO}_2$ в сосуде объемом 10 дм³ образовалось 56 дм³ CO_2 (н.у.). Определите среднюю скорость образования углекислого газа:
 - а) a) $0.0625 \text{ моль/(дм}^3 \cdot \text{c});$
 - б) б) $0.825 \text{ моль/(дм}^3 \cdot \text{c});$
 - в) в) 1,41 моль/($дм^3 \cdot c$);
 - г) г) 2 моль/($дм^3 \cdot c$).
- 20. В сосуд объемом 5 дм³ внесли 20 моль N_2 и некоторое количество H_2 . Через 10 секунд после начала реакции $N_2 + 3H_2 \leftrightarrow 2NH_3$ в сосуде находилось 15 моль N_2 . Средняя скорость расходования H_2 в этой реакции равна:
 - а) $0,1 \text{ моль/(дм}^3 \cdot c);$
 - б) $0.2 \text{ моль/(дм}^3 \cdot \text{c});$
 - в) $0.3 \text{ моль/(дм}^3 \cdot \text{c});$
 - г) $0.4 \text{ моль/(дм}^3 \cdot \text{c}).$
- 21. Средняя скорость реакции $H_2+Cl_2=2HCl$ равна 0,05 моль/(дм³·с). Определите концентрацию H_2 в сосуде через 20 секунд после начала реакции, если известно, что исходная концентрация H_2 была равна 2,5 моль/дм³:
 - a) 0.5 моль/дм^3 ;
 - б) 1 моль/дм 3 ;
 - в) $1,5 \text{ моль/дм}^3$;
 - Γ) 2 моль/дм³.
- 22. Скорость гомогенной реакции, протекающей по схеме $2A_{(r)} + B_{(r)} = C + 2D$ в некоторый момент времени равна 2 моль/(дм³·с). Чему равно значение константы скорости этой реакции, если концентрации веществ A и B в этот момент были, соответственно, равны 0.8 моль/дм³ и 2.5 моль/дм³?
 - a) 0,4;
 - б) 1,25;
 - в) 1,5;
 - r) 2,15.
- 23. Во сколько раз скорость прямой реакции станет меньше скорости обратной реакции при уменьшении давления в равновесной системе: $2A_{(\Gamma)} + B_{(\Gamma)} \leftrightarrow C_{(\Gamma)}$ в 3 раза?
 - a) 3;
 - б) 9;
 - в) 18;
 - r) 27.
- 24. Для гомогенной химической реакции вида $A_{(ra3)} + B_{(ra3)} = C$ главным (основным) кинетическим уравнением является:
 - a) $v = k \cdot C_A \cdot C_B$;
 - δ) $v = \pm \Delta C_A / \Delta t$;

- B) $v = \pm \Delta C_B / \Delta t$;
- Γ) $v = \pm \Delta C_B / \Delta t S$.
- 25. Порядок химической реакции по реагенту это:
 - a) стехиометрический коэффициент, стоящий перед формулой реагента в уравнении химической реакции;
 - б) показатель степени, в которую возводится концентрация реагента в главном кинетическом уравнении реакции;
 - в) определяемое опытным путём и зависящее от концентрации реагента число;
 - г) числовой показатель скорости химической реакции, протекающей при определённых условиях.
- 26. Порядок реакции по каждому из реагентов (или частный порядок реакции):
 - а) всегда совпадает с его стехиометрическим коэффициентом в химическом уравнении;
 - б) зависит от концентрации реагента в системе;
 - в) совпадает с его стехиометрическим коэффициентом в химическом уравнении только для сложных реакций;
 - г) совпадает с его стехиометрическим коэффициентом в химическом уравнении только для простых реакций.
- 27. Простыми химическими реакциями называются реакции:
 - а) в которых принимают участие только простые вещества;
 - б) протекающие в одну стадию, при этом в элементарном акте (соударении) такой реакции принимают участие и претерпевают изменения не более трех частиц: молекул, ионов либо радикалов;
 - в) протекающие в несколько стадий, при этом в элементарном акте (соударении) каждой из них принимают участие не более трех частиц;
 - г) в которых исходные вещества находятся в одинаковом агрегатном состоянии.
- 28. Молекулярность простой реакции:
 - а) всегда выражается целым числом;
 - б) может быть как целым так и дробным числом;
 - в) бывает не больше трех;
 - г) может принимать любое целочисленное значение.
- 29. Для простой бимолекулярной химической реакции:
 - а) частный порядок по каждому из реагентов равен двум;
 - б) общий порядок равен двум;
 - в) количество получившихся веществ не может быть больше двух;
 - г) в элементарном акте (соударении) принимают участие две частицы.
- 30. Основное кинетической уравнение простой бимолекулярной химической реакции может иметь вид:
 - а) $v = k \cdot C_A{}^a \cdot C_B{}^b$, где a,b любые целые числа;
 - $\delta) \quad v = k \cdot C_A^2;$
 - B) $v = k \cdot C_A \cdot C_B$;
 - Γ) $v = 2 k \cdot C_A$.
- 31. В случае мономолекулярной реакции:
 - а) частный порядок по реагенту и общий порядок всегда не совпадают;
 - б) в качестве продукта может образоваться только одно вещество;
 - в) частный порядок по реагенту и общий порядок совпадают;

- г) в элементарном акте не происходит столкновение (соударение) частиц исходных веществ друг с другом.
- 32. Наиболее распространенными простыми реакциями являются:
 - а) моно и бимолекулярные;
 - б) тримолекулярные;
 - в) тетрамолекулярные;
 - г) все вышеперечисленные
- 33. Сложными химическими реакциями называются реакции:
 - а) в которых принимают участие только сложные вещества;
 - б) протекающие в одну стадию, но с участием четырех и более исходных веществ;
 - в) протекающие в несколько стадий и с образованием промежуточных продуктов;
 - г) протекающие с образованием только сложных веществ.
- 34. В сложных химических реакциях:
 - а) отдельными стадиями могут быть только химические процессы;
 - б) отдельными стадиями могут быть, как химические так и физические процессы;
 - в) каждая из составляющих ее простых реакций протекает независимо от других и описывается своим кинетическим уравнением;
 - г) продукты промежуточных последовательных стадий обычно расходуются и в конечном состоянии системы не присутствуют.
- 35. Сложные химические реакции характеризуются:
 - а) молекулярностью;
 - б) общим порядком реакции;
 - в) механизмом реакции;
 - г) общим кинетическим уравнением реакции.
- 36. В сложной реакции:
 - а) общий порядок может выражаться, как целым, так и дробным числом;
 - б) общий порядок не может быть равен нулю;
 - в) общее кинетическое уравнение всегда содержит только одну константу скорости;
 - г) показатели порядка по каждому из реагентов могут не совпадать со стехиометрическими коэффициентами и определяются опытным путем.
- 37. В зависимости от механизма сложные реакции подразделяются на:
 - а) гомогенные и гетерогенные;
 - б) мономолекулярные и полимолекулярные;
 - в) параллельные, последовательные, обратимые, сопряженные;
 - г) экзотермические и эндотермические.
- 38. Для реакции нулевого порядка:
 - а) кинетическое уравнение выглядит следующим образом v = k;
 - б) скорость реакции является постоянной величиной, не зависящей от концентрации исходных веществ;
 - в) число стадий не может быть больше единицы;
 - г) в элементарном акте не может участвовать больше одной частицы.
- 39. Для последовательных реакций:
 - а) характерно наличие ряда промежуточных стадий, протекающих одна за другой в строго определенной последовательности;

- б) общая скорость реакции может определяться скоростью самой медленной стадии;
- в) общая скорость реакции может определяться скоростью самой быстрой стадии;
- г) каждая промежуточная стадия должна быть только простой моно или бимолекулярной реакцией.

40. Для параллельных реакций:

- а) характерно образование одних и тех же продуктов из разных исходных веществ;
- б) характерно образование разных продуктов из одних и тех же исходных веществ;
- в) скорость реакции определяется скоростью наиболее быстрой ее стадии;
- г) протекание каждой отдельной стадии происходит независимо от других и одновременно с ними.

41. Для сопряженных реакций:

- а) все стадии протекают одновременно и независимо друг от друга;
- б) протекание одной стадии возможно только в результате осуществления другой стадии;
- в) характерно образование на первой стадии активных промежуточных частиц, которые инициируют протекание всех остальных реакций;
- г) число стадий не может быть больше двух.

42. Для цепных реакций:

- а) в роли активных промежуточных частиц могут выступать только радикалы;
- б) инициирование реакции может осуществляться только за счет ионизирующего излучения;
- в) развитие цепи происходит до тех пор, пока в результате осуществления элементарного акта образуются активные промежуточные частицы;
- г) характерна зависимость их скорости от размеров, формы и материала реакционного сосуда, наличия в нем посторонних инертных веществ.

43. Обрыв цепи происходит:

- а) в результате полного расходования одного из исходных веществ;
- б) в результате взаимодействия между собой в элементарном акте двух активных частии:
- в) в результате прекращения действия внешнего фактора, приводящего к образованию активных частиц;
- г) в результате отвода конечных продуктов из реакционной системы.

44. Для экспериментального определения скорости химической реакции необходимо:

- a) иметь данные об изменении концентрации исходных либо конечных веществ во времени;
- б) знать строение исходных веществ и образующихся продуктов;
- в) знать подробный механизм химической реакции;
- г) знать количество выделившейся или поглощенной в ходе реакции теплоты.

45. Концентрация веществ в реакционном сосуде определяется:

- а) с помощью химических методов анализа;
- б) с помощью физико химических методов анализа;
- в) визуально, на основании изменения окраски раствора;
- г) на основании теоретических расчетов.

46. Константа скорости реакции нулевого порядка измеряется в :

- a) моль/дм³·c;
- б) моль· л⁻¹· с⁻¹;
- в) моль· c⁻¹;
- г) моль· л⁻¹.
- 47. Уравнение кинетической кривой для реакции нулевого порядка имеет вид:
 - a) $C = C_0 + kt$;
 - 6) $C = C_0 + kt^2$;
 - B) $C = C_0 kt^2$;
 - Γ) $C = C_0 kt$.
- 48. Уравнение кинетической кривой для реакции второго порядка имеет вид:
 - a) $C = C_0 e^{-kt}$;
 - 6) $C = C_0e(-kt);$
 - B) $lnC = lnC_0-kt$;
 - Γ) $lnC = lnC_0 + kt$.
- 49. Константа скорости реакции первого порядка имеет размерность:
 - а) моль c^{-1} ;
 - б) 1/с;
 - B) c^{-1} ;
 - г) моль·с.
- 50. Формула $\mathbf{t}_{1/2} = \mathbf{C}_0/2\mathbf{k}$ позволяет рассчитать время полупревращения для реакции:
 - а) второго порядка;
 - б) первого порядка;
 - в) нулевого порядка;
 - г) любого порядка.
- 51. Формула $\mathbf{t}_{1/2} = \mathbf{0.69/k}$ позволяет рассчитать время полупревращения для реакции:
 - а) нулевого порядка;
 - б) первого порядка;
 - в) второго порядка;
 - г) любого порядка.
- 52. Температурный коэффициент скорости химической реакции равен 2. При повышении температуры на 30°C скорость реакции увеличится в:
 - a) 2 pasa;
 - б) 6 paз;
 - в) 8 pa3;
 - г) 12 раз.
- 53. Энергия активации химической реакции зависит от:
 - а) природы исходных веществ;
 - б) присутствия катализатора;
 - в) концентрации исходных веществ;
 - г) объема реакционного сосуда.
- 54. При 20°C химическая реакция протекает за 1 час. За какое время завершится эта реакция при 50°C, если известно, что температурный коэффициент реакции равен 2?
 - а) за 6 мин.;

- б) за 7,5мин.;
- в) за 8,5 мин.;
- г) за 9,4мин.
- 55. При 60^{0} С химическая реакция протекает за 6 минут. За какое время завершится эта же реакция при 20^{0} С, если известно, что температурный коэффициент реакции равен 3?
 - а) за 7 часов;
 - б) за 7,8 часа;
 - в) за 8,1 часа;
 - г) за 8,4 часа.
- 56. При 30° С реакция протекает за 16 минут, а при 80° С за 30 секунд. Температурный коэффициент реакции равен:
 - a) 2;
 - б) 2,5;
 - в) 3;
 - r) 4.
- 57. Скорость химической реакции при 20°C равна 0,2 моль/дм³·с. Рассчитайте скорость этой же реакции при 50°C, если известно, что температурный коэффициент Вант Гоффа равен 3:
 - а) $1,8 \text{ моль/дм}^3 \cdot c$;
 - б) $5,4 \text{ моль/дм}^3 \cdot c$;
 - в) $3.6 \text{ моль/дм}^3 \cdot \text{c}$;
 - г) $9,4 \text{ моль/дм}^3 \cdot c$.
- 58. Скорость химической реакции при 60°C равна 1,5 моль/дм³·с. Рассчитайте скорость этой реакции при 40°C, если известно, что температурный коэффициент Вант-Гоффа для нее равен 2:
 - а) $0.375 \text{ моль/дм}^3 \cdot \text{c}$;
 - б) $0.75 \text{ моль/дм}^3 \cdot c$;
 - в) $3 \text{ моль/дм}^3 \cdot c$;
 - г) 6 моль/ $дм^3 \cdot c$.
- 59. Скорость реакции при 60° С равна 0.08 моль/дм³·с, а при 70° С 0.16 моль/дм³·с. Какой будет скорость этой реакции при 20° С?
 - а) $0.005 \text{ моль/дм}^3 \cdot \text{c}$;
 - б) $0.014 \text{ моль/дм}^3 \cdot \text{c}$;
 - в) $0.025 \text{ моль/дм}^3 \cdot \text{c}$;
 - г) $0.070 \text{ моль/дм}^3 \cdot \text{с}$.
- 60. Для большинства химических реакций с повышением температуры:
 - а) наблюдается возрастание скорости реакции;
 - б) наблюдается уменьшение скорости реакции;
 - в) скорость реакции изменяется сложным образом;
 - г) скорость реакции практически не изменяется.
- 61. Температурный коэффициент Вант Гоффа:
 - а) может принимать только целочисленные значения;
 - б) остается постоянным для данной химической реакции в любом температурном диапазоне;
 - в) для многих реакций при температуре больше, чем 300°С постепенно уменьшается:

- г) может принимать как целочисленные, так и дробные значения в широком диапазоне.
- 62. Энергией активации называется:
 - а) энергия, которая выделяется или поглощается при протекании химической реакции;
 - б) минимальный запас внутренней энергии, которым должна обладать молекула, чтобы быть активной;
 - в) энергия, которую необходимо затратить для разрыва химических связей в молекулах исходных веществ;
 - г) тот минимальный избыток энергии, по сравнению со средней энергией неактивных молекул исходных веществ в реакционной системе при данной температуре, который им нужно сообщить, чтобы столкновения между ними стали эффективными.
- 63. Зависимость константы скорости химической реакции от температуры (при ее изменении в самом широком диапазоне) описывается с помощью:
 - а) закона действующих масс;
 - б) закона Вант Гоффа;
 - в) уравнения Аррениуса;
 - г) второго закона термодинамики.
- 64. Множитель A в уравнении Аррениуса $k = A \cdot e^{Ea/RT}$:
 - а) соответствует числу активных соударений между молекулами в системе за единицу времени в единице объема;
 - б) отражает долю эффективных соударений между молекулами исходных веществ;
 - в) соответствует общему порядку химической реакции;
 - г) соответствует числу активных молекул в единице объема системы.
- 65. Величина множителя A в уравнении Аррениуса $k = A \cdot e^{Ea/RT}$:
 - а) всегда больше единицы и является только целым числом;
 - б) лежит в интервале от 0 до 1;
 - в) лежит в интервале 2-4;
 - г) может быть как положительным, так и отрицательным числом.
- 66. Для экзотермической реакции:
 - а) E_a (исходных веществ) $> E_a$ (продуктов реакции);
 - б) E_a (исходных веществ) $< E_a$ (продуктов реакции);
 - в) E_a (исходных веществ) = E_a (продуктов реакции);
 - г) тепловой эффект равен разности между энергией активации продуктов реакции и исходных веществ.
- 67. Для эндотермической реакции:
 - а) Еа (исходных веществ) > Еа (продуктов реакции);
 - б) Еа (исходных веществ) < Еа (продуктов реакции);
 - в) E_a (исходных веществ) = E_a (продуктов реакции);
 - г) тепловой эффект равен разности между энергией активации продуктов реакции и исходных веществ.
- 68. При образовании переходного состояния или активированного комплекса:
 - а) старые связи между атомами реагентов ослабляются, но полностью не разрушаются;
 - б) связи между атомами реагентов разрушаются полностью;
 - в) намечается взаимодействие по месту образования новых связей;
 - г) происходит образование новых связей, приводящее к формированию молекул продуктов реакции.

- 69. Величина энергии активации:
 - а) всегда больше энергии разрыва связей в молекулах реагентов;
 - б) может быть меньше энергии разрыва связей в молекулах реагентов;
 - в) всегда равна энергии разрыва связей в молекулах реагентов;
 - г) никаким образом не связана с энергией разрыва связей в молекулах реагентов.
- 70. Соударение между активными молекулами реагентов:
 - а) всегда является эффективным;
 - б) может быть и неэффективным;
 - в) всегда является неэффективным;
 - г) является необходимым и достаточным условием для принципиальной возможности протекания химической реакции.
- 71. Сложный характер зависимости скорости многих биохимических реакций от температуры объясняется:
 - а) белковой природой используемых при этом катализаторов ферментов;
 - б) особенностями механизма данных реакций;
 - в) строением биоорганических соединений;
 - г) сочетанием набора случайных факторов.
- 72. Температурный оптимум протекающих «in vivo» биохимических реакций (~308К -311К) объясняется:
 - а) физиологической невозможностью организма создавать и поддерживать более высокую температуру;
 - б) набором случайных факторов;
 - в) возможностью протекания процессов денатурации белковых молекул при более высокой температуре;
 - г) резким уменьшением активности ферментов при более высокой температуре.
- 73. На возможность эффективного соударения между молекулами исходных веществ оказывает влияние:
 - а) только энергетический фактор;
 - б) наряду с энергетическим и стерический фактор, т.е. ориентация молекул реагентов в пространстве друг относительно друга;
 - в) перераспределение энергии внутри столкнувшихся молекул без разрушения химических связей;
 - г) только размеры и форма столкнувшихся частиц.
- 74. Если величина множителя A в уравнении Аррениуса $k = A \cdot e^{Ea/RT}$ равна 1, то:
 - а) соударение между любыми молекулами исходных веществ не приводит к протеканию реакции;
 - б) каждое соударение между молекулами исходных веществ приводит к протеканию реакции;
 - в) все молекулы реагентов являются активными;
 - г) протекание химической реакции невозможно.
- 75. Если величина множителя A в уравнении Аррениуса $k = A \cdot e^{Ea/RT}$ равна 0, то:
 - a) соударение между любыми молекулами исходных веществ не приводит к протеканию реакции;
 - б) каждое соударение между молекулами исходных веществ приводит к протеканию реакции;

- в) все молекулы реагентов являются активными;
- г) протекание химической реакции невозможно.

Тесты к теме: Катализ

- 1. Катализаторы это вещества, которые:
 - а) ускоряют химическую реакцию, но сами в ней не расходуются;
 - б) ускоряют химическую реакцию и расходуются в результате ее протекания;
 - в) замедляют химическую реакцию и сами в ней не расходуются;
 - г) замедляют химическую реакцию и расходуются при ее протекании.
- 2. Катализатор в случае обратимой реакции:
 - а) изменяет скорость только прямой реакции;
 - б) изменяет скорость только обратной реакции;
 - в) в одинаковой мере изменяет скорость как прямой, так и обратной реакции;
 - г) не влияет на скорость прямой и обратной реакции.
- 3. Скорость реакции в случае гомогенного катализа:
 - а) не зависит от концентрации катализатора;
 - б) уменьшается при повышении концентрации катализатора;
 - в) возрастает при повышении концентрации катализатора;
 - г) зависит от концентрации активных центров на поверхности катализатора.
- 4. Скорость реакции в случае гетерогенного катализа:
 - а) зависит от площади катализатора;
 - б) зависит от концентрации катализатора;
 - в) зависит от числа активных центров на поверхности катализатора;
 - г) зависит от цвета катализатора.
- 5. Каталитической не может быть реакция:
 - а) разложения;
 - б) соединения;
 - в) ионного обмена, протекающая в водном растворе между сильными электролитами;
 - г) окислительно-восстановительная.
- 6. Укажите схемы каталитических реакций:
 - a) NaOH_(p-p) + HCl_(p-p) \rightarrow ;
 - 6) $2SO_2 + O_2 \rightarrow$;
 - B) $2H_2 + O_2 \rightarrow$;
 - Γ) CH₃-C(O)-O-CH₃ + H₂O \rightarrow .
- 7. Скорость реакции при гетерогенном катализе зависит от:
 - а) площади поверхности твердого катализатора;
 - б) количества активных центров на поверхности катализатора;
 - в) цвета и формы катализатора;
 - г) концентрации твердого катализатора.
- 8. При гомогенном катализе:
 - а) исходные вещества адсорбируются на поверхности катализатора;
 - б) молекулы катализатора взаимодействуют с молекулами одного из исходных веществ, образуя нестойкое промежуточное соединение;
 - в) скорость реакции зависит от концентрации катализатора в реакционной системе;
 - г) катализатор расходуется ко времени окончания реакции.

9. Ингибиторы – это:

- а) вещества, уменьшающие скорость химической реакции;
- б) каталитические яды;
- в) вещества, не влияющие на скорость химической реакции;
- г) вещества, увеличивающие время протекания химической реакции до наступления равновесия.

10. Вещества, усиливающие действие катализаторов, называются:

- а) ингибиторами;
- б) активаторами;
- в) стабилизаторами;
- г) промоторами.

11. Антиоксидантами называются:

- а) вещества, уменьшающие скорость процесса окисления;
- б) вещества, способствующие интенсификации процессов окисления;
- в) ингибиторы, влияющие на протекание процессов окисления;
- г) вещества, не способные взаимодействовать с кислородом.

12. Автокаталитическими называются такие реакции, в которых:

- а) в роли катализатора выступает один из реагентов;
- б) в роли катализатора выступает один из продуктов реакции;
- в) скорость реакции возрастает за счет действия какого нибудь внешнего фактора;
- г) скорость реакции все время находится на высоком уровне и не зависит от действия внешних и внутренних факторов.

13. Соответствующим образом подобранный катализатор может ускорить:

- а) любую химическую реакцию;
- б) как прямую, так и обратную реакцию, способную протекать при данных условиях;
- в) только термодинамически возможные, при данных условиях, реакции, которые сопровождаются уменьшением свободной энергии Гиббса (ΔG <0);
- г) только те реакции которые сопровождаются возрастанием при данных условиях свободной энергии Гиббса ($\Delta G \! > \! 0$).

14. Характерной особенностью катализа является то что:

- а) содержание катализатора в реакционной смеси по сравнению с количествами исходных веществ должно быть во много раз больше;
- б) химическое количество катализатора в реакционной смеси должно быть примерно одинаковыми с химическим количеством исходных веществ;
- в) содержание катализатора в реакционной смеси должно быть значительно меньше, чем химические количества исходных веществ;
- г) скорость каталитической реакции всегда не зависит от количества катализатора, присутствующего в реакционной смеси.

15. Селективные катализаторы, в отличие от обычных:

- а) могут изменять скорость реакции только при строго определённых условиях;
- б) могут изменять скорость реакции только в том случае, если их содержание в системе становится больше строго определённой величины;
- в) могут изменять не только скорость реакции, но и направление её протекания;
- г) действую на сложную реакцию, увеличивают скорость только одной из нескольких параллельно протекающих реакций.

- 16. Из нескольких возможных реакций катализатор обычно:
 - а) всегда ускоряет только ту, которая сопровождается наибольшей убылью свободной энергии Гиббса;
 - б) ускоряет только какую то определённую реакцию, протекающую между строго конкретными веществами;
 - в) в одинаковой мере ускоряет все реакции;
 - г) всегда ускоряет только ту реакцию, которая сопровождается наименьшей убылью свободной энергии Гиббса.

17. Катализатор:

- а) участвует в элементарном акте реакции;
- б) не участвует в образовании промежуточного соединения с каким-либо участником реакции в случае протекания многостадийного процесса;
- в) образует активированный комплекс со всеми реагирующими веществами в случае протекания одностадийного процесса;
- г) постепенно расходуется в ходе химической реакции.
- 18. В результате протекания каталитической реакции катализатор:
 - а) претерпевает химическое превращения;
 - б) остаётся химически неизменным;
 - в) сохраняет своё количество постоянным (если не учитывать механического уноса и возможности протекания побочных процессов, в которых он выступает в роли реагента);
 - г) всегда уменьшает своё изначальное химическое количество.
- 19. Природные катализаторы, имеющие белковую природу и ускоряющие протекание биохимических реакций в животных и растительных клетках называются:
 - а) ферментами;
 - б) антиоксидантами;
 - в) витаминами;
 - г) антиглобулинами.
- 20. Отличительной особенностью ферментов от других катализаторов является то, что они:
 - а) способны ускорять любую биохимическую реакцию;
 - б) обладают более высокой каталитической активностью;
 - в) являются строго специфичными;
 - г) проявляют свою максимальную активность в строго определённых внешних условиях.
- 21. Субстратной специфичностью фермента является:
 - а) его способность ускорять только прямую реакцию до наступления в системе химического равновесия;
 - б) его способность проявлять каталитическую активность только по отношению к какому- нибудь одному исходному веществу (субстрату);
 - в) его способность проявлять каталитическую активность по отношению в разным субстратам, имеющим определённые структурные фрагменты;
 - г) его способность ускорять как прямую, так и обратную реакцию до наступления в системе химического равновесия

- 22. Способность фермента проявлять каталитическую активность только по отношению к одному из стереоизомеров исходного вещества называется его:
 - а) стереоспецифичностью;
 - б) субстратной специфичностью;
 - в) групповой специфичностью;
 - г) селективностью.
- 23. В пищевой промышленности антиоксиданты используются для:
 - а) увеличения сроков хранения жиров и жиросодержащих продуктов;
 - б) уменьшения скорости протекания процессов окисления;
 - в) увеличения скорости протекания процессов окисления;
 - г) подавления действия ферментов на продукты при их употреблении в пищу.
- 24. Ферментом с групповой специфичностью является:
 - а) пепсин;
 - б) амилаза;
 - в) алкогольдегидрогеназа;
 - г) трипсин.
- 25. Ферментом с субстратной специфичностью является:
 - а) пепсин;
 - б) амилаза;
 - в) уреаза;
 - г) трипсин.

Тесты к теме:

Электрохимия. Электропроводимость растворов

- 1. К проводникам первого рода относятся:
 - а) золото;
 - б) бронза;
 - в) латунь;
 - г) расплав хлорида натрия.
- 2. К проводникам второго рода относятся:
 - а) чугун;
 - б) расплав оксида алюминия;
 - в) раствор глюкозы;
 - г) раствор формиата натрия.
- 3. Диэлектриком является:
 - а) алмаз;
 - б) графит;
 - в) эбонит;
 - г) резина.
- 4. К проводникам второго рода относятся:
 - а) раствор гексана в бензоле;
 - б) раствор ацетона в воде;
 - в) раствор хлороводорода в воде;
 - г) раствор серы в гексане.

- 5. Электропроводность это:
 - а) количественная характеристика способности вещества проводить электрический ток;
 - б) суммарный электрический заряд, проходящий через вещество за единицу времени при приложении к нему разности потенциалов в 1 В;
 - в) суммарный электрический заряд всех частиц вещества, содержащихся в 1 моле вещества и способных перемещаться под действием электрического тока;
 - г) качественная характеристика подвижности частиц вещества, способных перемещаться под действием внешнего электрического поля.
- 6. Единицей измерения электропроводимости в системе СИ является:
 - а) См (Сименс);
 - б) Ом⁻¹;
 - в) B;
 - r) A.
- 7. Под удельной электропроводностью раствора электролита в системе СИ подразумевают:
 - а) скорость перемещения (м/с) ионов в нем при наложении внешнего электрического поля с разностью потенциалов 1 В:
 - б) электропроводность объема раствора, заключенного между двумя параллельными электродами, имеющими площадь поверхности в 1 м² каждый и расположенными на расстоянии 1м друг от друга;
 - в) силу тока, возникающего в 1 $\rm m^3$ раствора, расположенного между двумя параллельными электродами площадью 1 $\rm m^2$ каждый, при наложении разности потенциалов 1 $\rm B$;
 - г) суммарный электрический заряд проходящий за 1 сек. через 1 м³ раствора, при наложении разности потенциалов 1 В.
- 8. Удельная электропроводность раствора в системе СИ измеряется в:
 - a) B · 1 M^3 .;
 - б) См · м⁻¹;
 - в) Ом⁻¹ · м⁻¹;
 - г) B · м.
- 9. Удельная электропроводность растворов зависит от:
 - а) концентрации электролита в растворе;
 - б) природы растворенного в нем электролита;
 - в) приложенной разности потенциалов;
 - г) температуры.
- 10. Удельная электропроводность раствора слабого электролита зависит от :
 - а) степени диссоциации электролита;
 - б) внешнего давления над раствором;
 - в) приложенной разности потенциалов;
 - г) концентрации электролита.
- 11. Удельная электропроводность растворов сильных электролитов при увеличении их концентрации:
 - а) всегда возрастает;
 - б) всегда уменьшается;
 - в) сначала уменьшается, а затем возрастает;
 - г) сначала возрастает, а затем уменьшается.

- 12. На величину удельной электропроводности раствора оказывают влияние такие свойства ионов, как:
 - а) их окраска в растворе;
 - б) величина заряда;
 - в) радиус;
 - г) степень гидратации.
- 13. Удельная электропроводность растворов слабых электролитов в отличие от сильных:
 - а) с увеличением концентрации возрастает в меньшей степени;
 - б) не зависит от температуры;
 - в) сначала возрастает, а затем уменьшается;
 - г) при одной и той же молярной концентрации всегда будет значительно меньше.
- 14. Уменьшение удельной электропроводности сильных электролитов в концентрированных растворах по сравнению с разбавленными связано с:
 - а) уменьшением степени диссоциации электролита;
 - б) увеличением сил электростатического взаимодействия между ионами;
 - в) образованием ассоциатов (ионных двойников, тройников и т.д.);
 - г) интенсификацией процесса образования ионных атмосфер.
- 15. Значительно большая скорость движения ионов H⁺ и OH⁻ в водной среде по сравнению с другими ионами объясняется:
 - а) малыми размерами этих ионов;
 - б) отсутствием у этих ионов гидратной оболочки;
 - в) эстафетным механизмом перемещения данных ионов;
 - г) большой плотностью электрического заряда у данных ионов.
- 16. Удельная электропроводность растворов электролитов по сравнению с металлическими проводниками:
 - а) значительно выше;
 - б) во много раз меньше;
 - в) находится примерно на одинаковом уровне;
 - г) в зависимости от природы электролита может иметь как большее, так и меньшее значение.
- 17. Эквивалентная электропроводность в системе СИ характеризует:
 - a) электрическую проводимость раствора, содержащего 1 моль химического эквивалента растворенного вещества;
 - б) электрическую проводимость 1 м³ раствора электролита;
 - в) электрическую проводимость 1 м³ раствора, содержащего 1 моль электролита;
 - г) электрическую проводимость раствора, содержащего 1 моль растворенного вещества.
- 18. Для сильных и слабых электролитов эквивалентная электропроводность:
 - а) возрастает с увеличением концентрации раствора;
 - б) возрастает с уменьшением концентрации раствора;
 - в) зависит от их природы;
 - г) возрастает с увеличением температуры.
- 19. Эквивалентная электропроводность достигает максимального значения:
 - а) в насыщенных растворах электролитов;
 - б) в сильно разбавленных растворах электролитов;

- в) в растворах, содержащих 1 моль растворенного вещества;
- г) в растворах, содержащих 1 г растворенного вещества.
- 20. В сильно-разбавленных растворах электролитов λ_{∞} приобретает наибольшее значение, т.к.:
 - a) в этом случае количество ионов электролита достигает своей максимальной величины;
 - б) взаимодействия между ионами в растворе отсутствуют;
 - в) степень диссоциации как сильных так и слабых электролитов приближается к 1;
 - г) образование ионных атмосфер не происходит.
- 21.Согласно закона Кольрауша:
 - a) $\lambda_{\infty} = \lambda_{\kappa} + \lambda_{a}$;
 - δ) $λ_\infty = F \cdot (u_\kappa + u_a);$
 - B) $\lambda_V = C \cdot \rho \cdot V$
 - Γ) $\lambda_V = U_k + U_a$.
- 22. Абсолютная подвижность иона $U_k\,$ или $U_a\,$ равна:
 - а) скорости движения катиона или аниона в насыщенном растворе электролита;
 - б) скорости теплового движения катионов или анионов электролита в бесконечно-разбавленном растворе;
 - в) скорости движения катионов или анионов электролита в сильно-разбавленном растворе при приложенной разности потенциалов 1 В/м;
 - г) скорости движения катионов или анионов электролита в растворе объемом 1 м³.
- 23. Кондуктометрический метод анализа основан:
 - а) на измерении эквивалентной электропроводности раствора λ_V ;
 - б) на измерении эквивалентной электропроводности раствора при бесконечном разбавлении;
 - в) на измерении удельной электропроводности раствора при разных концентрациях растворенного вещества;
 - г) на измерении оптической плотности раствора.
- 24. Точку эквивалентности при кондуктометрическом титровании определяют:
 - а) с помощью индикатора;
 - б) с помощью вспомогательного вещества;
 - в) визуально, на основании изменения внешнего вида раствора;
 - г) графическим путем на основании резкого изменения измеренной электропроводности раствора по мере добавления титранта.
- 25. На основании измерения эквивалентной электропроводности при данной концентрации вещества ($\lambda_{\rm V}$) и в сильно разбавленных растворах ($\lambda_{\rm \infty}$) можно определить:
 - а) степень диссоциации слабого электролита;
 - б) константу диссоциации слабого электролита в растворе;
 - в) концентрацию электролита в растворе;
 - г) массу и заряд иона электролита в растворе.
- 26. Предельная электрическая проводимость электролита (λ_{∞}) достигается:
 - а) в насыщенном растворе;
 - б) в растворе, содержащем 1 моль вещества;
 - в) в сильно разбавленном растворе;
 - г) при температуре, близкой к температуре кипения раствора.

- 27. Предельная электрическая проводимость электролита (λ_{∞}) зависит от:
 - а) концентрации раствора;
 - б) скорости движения ионов электролита в растворе;
 - в) взаимодействия между ионами электролита в растворе;
 - г) размеров и прочности «ионных атмосфер».
- 28. Повышение удельной электропроводности растворов при увеличении температуры связано с:
 - а) уменьшением вязкости раствора;
 - б) увеличением скорости движения ионов;
 - в) с возрастанием степени диссоциации слабого электролита;
 - г) с уменьшением степени диссоциации молекул растворителя.
- 29. В системе СИ эквивалентная электропроводность измеряется в :
 - a) См · моль · см;
 - б) Om^{-1} моль cm^{3} ;
 - в) См · моль $^{-1}$ · м 2 ;
 - г) $Om^{-1} \cdot Moль^{-1} \cdot M^2$.
- 30. При кондуктометрическом титровании сильной кислоты щелочью:
 - а) удельная электропроводность раствора в точке эквивалентности достигает своего максимального значения;
 - б) удельная электропроводность раствора в точке эквивалентности достигает своего минимального значения;
 - в) в обязательном порядке необходимо присутствие кислотно-основного индикатора;
 - г) исходные растворы могут быть мутными или окрашенными.
- 31.Величина электрического заряда, возникающего на единице площади металлической пластинки, опущенной в дистиллированную воду, зависит от:
 - а) природы металла, из которого выполнена пластинка;
 - б) температуры системы;
 - в) объема воды;
 - г) формы металлической пластинки.
- 32. На поверхности металлической пластинки, опущенной в дистиллированную, воду всегда возникает:
 - а) положительный заряд;
 - б) заряд равный 0;
 - в) отрицательный заряд;
 - г) на одной части пластинки положительный заряд, на другой отрицательный.
- 33. Переход катионов металла с поверхности металлической пластинки в воду обусловлен:
 - а) тепловым движением ионов в металлическом образце;
 - б) действием молекул растворителя на кристаллическую решетку металла;
 - в) процессами диффузии;
 - г) гидратацией катионов металла, расположенных на поверхности кристаллической решетки.
- 34. Отрицательный заряд, возникающий на поверхности металлической пластинки, опущенной в дистиллированную воду, обусловлен:
 - а) переходом анионов из жидкой фазы на пластинку;

- б) присоединением атомами и ионами металлов, расположенных в узлах кристаллической решетки, электронов, высвобождающихся в ходе окисления молекул воды;
- в) избыточным содержанием в кристаллической решетке металла свободных электронов, образующихся после перехода части катионов Me^{n+} в жидкую фазу;
- г) переходом части свободных электронов из кристаллической решетки металла в воду.
- 35. Пластинки, выполненные из активных металлов (Mg, Zn, Fe) в растворе собственной соли, как правило:
 - а) заряжаются отрицательно;
 - б) заряжаются положительно;
 - в) не заряжаются;
 - г) меняют знак заряда со временем.
- 36. Пластинки, выполненные из малоактивных металлов(Cu, Ag, Hg, Pt, Au), в растворе собственной соли, как правило:
 - а) заряжаются отрицательно;
 - б) не заряжаются;
 - в) заряжаются положительно;
 - г) в течение длительного времени периодически меняют знак заряда.
- 37. Металлическим электродом называется:
 - а) система, состоящая из металлической пластинки, опущенной в расплав собственного металла;
 - б) система, состоящая из растворов двух солей, контактирующих друг с другом через пористую перегородку;
 - в) система, состоящая из контактирующих друг с другом двух пластинок, разнородных металлов;
 - г) система, состоящая из металлической пластинки, опущенной в раствор собственной соли;
- 38. Цинковая пластинка, опущенная в раствор сульфата цинка, является:
 - а) металлическим электродом первого рода;
 - б) металлическим электродом второго рода;
 - в) обратимым электродом;
 - г) необратимым электродом;
- 39. Стандартным электродным потенциалом E^0 для металлического электрода называется:
 - а) потенциал, условно принятый за стандарт;
 - б) потенциал, который возникает на электроде при определённых стандартных значениях температуры и внешнего давления системы;
 - в) потенциал, который возникает на электроде при активности ионов металла соли в растворе равной 1моль/дм³ и температура 25⁰C;
 - г) потенциал, который возникает на электроде при активности ионов металла соли в растворе большей, чем 1моль/дм 3 .
- 40. Величина электродного потенциала для металлического электрода рассчитывается по уравнению:

a)
$$E = \frac{RT}{nF} \ln a_{Me^{n+}};$$

6)
$$E = E^0 + \frac{RT}{nF} \ln a_{Me^{n+}};$$

- B) $E = \frac{RT}{E^0 F} \ln a_{Me^{n+}};$
- $\Gamma) \quad E = E^0 + \frac{nF}{RT} \ln a_{Me^{n+}}.$
- 41. Серебрянная пластинка, покрытая слоем хлорида серебра и опущенная в насыщенный раствор хлорида калия, является:
 - а) электродом первого рода;
 - б) электродом второго рода;
 - в) редокс-электродом;
 - г) необратимым электродом.
- 42. В каком ряду металлы расположены по возрастанию их восстановительной активности в реакциях протекающих в водной среде:
 - a) Ag, Fe, Li, Na;
 - б) Zn, Al, Mg, K;
 - в) Na, Zn, Fe, Cu;
 - г) Na, Ca, K, Li;
- 43. В каком ряду ионы металлов расположены по возрастанию их окислительной активности в реакциях протекающих в водной среде?

 - a) Li⁺, K⁺, Ca²⁺, Mg²⁺; б) K⁺, Cu²⁺, Ag⁺, Au³⁺;
 - B) Hg^{2+} , Ag^+ , Cu^{2+} , Fe^{2+} ;
 - r) Mg^{2+} , Pb^{2+} , Al^{3+} , Cr^{3+} .
- 44. По отношению к растворам солей Mg будет выступать в роли восстановителя в случае протекания между ними реакции?
 - a) K_2SO_4 ;
 - б) FeSO₄;
 - в) CuSO₄;
 - г) Na₂SO₄.
- 45. По отношению к каким металлам ионы Cu^{2+} в водном растворе будут выступать в роли окислителя?
 - a) Ag;
 - б) Pt;
 - в) Pb;
 - г) Fe;
- 46. Величина электродного потенциала для электрода второго рода зависит:
 - а) от концентрации ионов металла труднорастворимой соли в растворе;
 - б) от концентрации аниона, общего для труднорастворимой и хорошо растворимой солей;
 - в) от концентрации катионов металла хорошо растворимой соли;
 - г) от общей концентрации всех ионов в растворе.
- 47. Примером электродов второго рода могут служить:
 - а) цинковый электрод;
 - б) водородный электрод;
 - в) каломельный электрод:
 - г) стеклянный электрод.

- 48. Потенциал хлорсеребряного электрода при $t=25^{\circ}$ С можно рассчитать по уравнению:
 - a) $E = E^0 + \frac{RT}{nF} \ln a_{Ag}^+;$
 - $6) \quad E = E^0 + 0.059 \lg a_{Aa^+};$
 - B) $E = E^0 \frac{RT}{nF} \ln a_{Cl^-};$
 - $\Gamma) \quad E = E^0 + \frac{RT}{nF} \ln \frac{aAg^+}{aCl^-}$
- 49. Экспериментально измеренная величина электродного потенциала показывает:
 - a) во сколько раз она больше величины потенциала стандартного водородного электрода;
 - б) во сколько раз она меньше величины потенциала стандартного водородного электрода;
 - в) на сколько она меньше или больше величины потенциала стандартного водородного электрода;
 - г) абсолютное значение.
- 50. Потенциал E_2 определяемого электрода равен измеренной разности потенциалов E_2 – E_1 = ΔE_s если:
 - а) его величина больше, чем величина электрода сравнения Е₁;
 - б) его величина меньше, чем величина электрода сравнения Е₁;
 - в) его величина равна величине электрода сравнения Е₁;
 - г) его величина равна нулю.
- 51. Потенциал E_2 определяемого электрода равен E_1 ΔE , если:
 - а) его величина больше, чем величина электрода сравнения Е1;
 - б) его величина меньше, чем величина электрода сравнения Е₁;
 - в) его величина равна величине электрода сравнения Е₁;
 - г) его величина равна нулю.
- 52. При измерении электродных потенциалов равным нулю принимают:
 - а) стандартный потенциал водородного электрода;
 - б) стандартный потенциал хлорсеребряного электрода;
 - в) стандартный потенциал каломельного электрода:
 - г) потенциал водородного электрода, независимо от концентрации кислоты в растворе.
- 53. Стандартным или нормальным электродным потенциалом металла называют разность потенциалов:
 - а) между металлом, погружённым в дистиллированную воду и стандартным водородным электродом;
 - б) между металлом, погружённым в раствор своей соли и водородным электродом;
 - в) между металлом, погружённым в раствор своей соли с активностью ионов Meⁿ⁺ равной 1моль/дм³ и стандартным водородным электродом;
 - г) между раствором соли с активностью ионов одноименного металла Me^{n+} равной 1моль/дм 3 , и водородным электродом.
- 54. Редокс-системами называются растворы, содержащие в своём составе:
 - а) не менее двух веществ;
 - б) любые два вещества, одно из которых может выступать в роли окислителя, а второе в роли восстановителя;

- в) два вещества, в которых атомы одного и того же элемента находятся в разной степени окисления;
- г) более двух веществ, обладающих окислительно-восстановительной двойственностью.
- 55. Окисленной формой редокс-системы всегда называется то вещество, в котором:
 - а) атомы элемента имеют большую степень окисления;
 - б) атомы элемента имеют положительную степень окисления;
 - в) атомы элемента имеют отрицательную степень окисления;
 - г) атомы элемента имеют меньшую степень окисления.
- 56. Восстановленной формой редокс-ситемы всегда называется то вещество, в котором:
 - а) атомы элемента имеют большую степень окисления;
 - б) атомы элемента имеют положительную степень окисления;
 - в) атомы элемента имеют отрицательную степень окисления;
 - г) атомы элемента имеют меньшую степень окисления.
- 57. Переход окисленной формы в восстановленную и наоборот заключается только в обмене между ними электронами для следующих редокс-систем:
 - a) Fe^{3+}/Fe^{2+} ;
 - 6) MnO_4^-/Mn^{2+} ;
 - B) $[Fe^{3+}(CN)_6]^{3-}/[Fe^{2+}(CN)_6]^{4-};$
 - Γ) Sn⁴⁺/Sn²⁺;
- 58. Переход окисленной формы в восстановленную и наоборот кроме обмена электронами сопровождается участием в этом процессе других частиц для следующих редокс-систем:
 - a) $Cl_2/2Cl^-$;
 - б) BrO⁻/Br⁻;
 - в) ClO₃⁻/Cl⁻;
 - Γ) Cu^{2+}/Cu^{+} .
- 59. Металлическая пластинка в редокс-электроде заряжается положительно в случае:
 - а) избыточного содержания в растворе восстановленной формы;
 - б) избыточного содержания в растворе окисленной формы;
 - в) одинакового содержания в растворе восстановленной и окисленной форм;
 - г) при содержании окисленной и восстановленной форм в растворе, равном 1моль/дм³.
- 60. Металлическая пластинка в редокс-электроде заряжается отрицательно в случае:
 - а) избыточного содержания в растворе восстановленной формы;
 - б) избыточного содержания в растворе окисленной формы;
 - в) содержания в растворе восстановленной и окисленной форм;
 - г) при содержании окисленной и восстановленной форм в растворе, равном 1моль/дм³.
- 61. Стандартный или нормальный редокс-потенциал возникает в системе:
 - a) при t=298⁰ C;
 - б) при Т=298 К и активности окисленной и восстановленной форм равной 1моль/дм³;
 - в) при Т=298 К и любой одинаковой активности окисленной и восстановленной форм в растворе:
 - г) при $t=298^{\circ}$ С и активности окисленной и восстановленной форм в растворе равной 1 моль/дм³.
- 62. В уравнении Нернста-Петерса для расчета величины потенциала редокс-электрода **n** это:

- а) величина заряда окисленной или восстановленной формы;
- б) разность между величинами заряда окисленной и восстановленной форм;
- в) число электронов переходящих от окисленной формы на металлическую пластинку;
- г) число электронов, которые принимает одна молекула или ион окисленной формы, превращаясь в восстановленную форму.
- 63.Величина редокс-потенциала при Т=298К может быть рассчитана по уравнению:
 - a) $E = E^0 \frac{0,059}{n} \ln \frac{a \operatorname{Re} d}{aOx};$
 - 6) $E = E^0 \frac{RT}{nF} \ln \frac{a_{Ox}}{a_{Red}};$
 - B) $E = E^0 + \frac{RT}{nF} \ln \frac{a_{Ox}}{a_{Red}};$
 - r) $E = E^0 + \frac{0,059}{n} \lg \frac{a_{Ox}}{a_{Red}}$.
- 64. Имеются пять окислительно-восстановительных систем:
 - 1) Fe³⁺/ Fe²⁺; 2) Cu²⁺/Cu⁺; 3) Cl₂/2Cl⁻; 4) BrO⁻/Br⁻; 5) Sn⁴⁺/Sn²⁺.

Значения их редокс-потенциалов равны, соответственно:

1) 0,771B; 2) 0,16B; 3) 1,36B; 4) 0,76B; 5) 0,153B.

В роли окислителя по отношению к системе Fe^{3+}/Fe^{2+} могут выступать:

- a) Cu^{2+}/Cu^{+} ;
- б) Cl₂/2Cl⁻;
- в) BrO⁻/Br⁻;
- Γ) Sn⁴⁺/Sn²⁺.
- 65. Имеется пять окислительно восстановительных систем:
 - 1) Fe³⁺/ Fe²⁺; 2) Cu²⁺/Cu⁺; 3) Cl₂/2Cl⁻; 4) BrO⁻/Br⁻; 5) Sn⁴⁺/Sn²⁺.

Значения их редокс- потенциалов равны соответственно:

1)0,771B; 2) 0,16B; 3) 1,36B; 4) 0,76B; 5) 0,153B.

В роли восстановителя по отношению к системе BrO-/Br-могут выступать:

- a) Cu^{2+}/Cu^{+} ;
- б) Cl₂/2Cl⁻;
- в) Fe^{3+}/Fe^{2+} ;
- Γ) Sn^{4+}/Sn^{2+} .
- 66. Пластина из инертного металла в редокс- электроде:
 - а) выступает в качестве посредника при обмене электронами между окисленной и восстановленной формами;
 - б) подвергается окислению за счет химического взаимодействия с компонентами редокс системы;
 - в) подвергается восстановлению за счет химического взаимодействия с компонентами редокс системы;
 - г) заряжается положительно или отрицательно в зависимости от соотношения между окисленной и восстановленной формами.
- 67. Величина редокс-потенциала зависит от:
 - а) природы инертного металла;
 - б) формы и размеров металлической пластинки;
 - в) природы частиц, образующих редокс-систему;
 - г) концентрации компонентов редокс-системы в растворе.

- 68. Значения E^0 для редокс-электродов:
 - а) определяют экспериментально относительно стандартного водородного электрода;
 - б) рассчитывают по уравнению Нернста;
 - в) определяют экспериментально относительно любого металлического электрода;
 - г) рассчитывают по уравнению Петерса.
- 69. При определении значения E^0 для редокс-электрода:
 - а) концентрации или активности окисленной и восстановленной форм в растворе должны быть одинаковыми;
 - б) активность других частиц (H⁺, OH⁻ и т.д.), принимающих участие в процессе перехода окисленной формы в восстановленную, должна быть равна активности окисленной или восстановленной форм;
 - в) активность других частиц (H⁺, OH⁻ и т.д.), принимающих участие в процессе перехода окисленной формы в восстановленную, должна быть равна 1моль/дм³;
 - г) активность воды в растворе должна быть равна 1моль/дм³.
- 70. Для окислительно-восстановительной системы MnO_4 -/ Mn^{2+} , в которой осуществляется следующий электродный процесс:

$$Mn^{+7}O_4^- + 8H^+ + 5\bar{e} \leftrightarrow Mn^{2+} + 4H_2O$$

редокс-потенциал рассчитывается по формуле:

a)
$$E = E^0 + \frac{RT}{nF} \ln \frac{a_{MnO_4^-}}{a_{Mn^{2^+}}};$$

6)
$$E = E^0 + \frac{RT}{nF} \ln \frac{a_{Mn^{2+}}}{a_{Mno_{,-}}};$$

B)
$$E = E^0 + \frac{RT}{nF} \ln \frac{a_{MnO_4^-} \cdot a_{H^+}^8}{a_{Mn^{2+}}}$$
;

$$\Gamma) \quad \mathbf{E} = \mathbf{E}^0 + \frac{RT}{nF} \ln \frac{a_{Mn^{2+}} \cdot a_{H_2O}^4}{a_{MnO_4}^- a_{H^+}^8}.$$

- 71. Диффузионные потенциалы возникают:
 - a) на границе соприкосновения двух растворов с одинаковой концентрацией одного и того же вещества;
 - б) на границе соприкосновения двух растворов с разными концентрациями одного и того же вещества;
 - в) на границе соприкосновения двух растворов разных веществ с одинаковой концентрацией;
 - г) на границе соприкосновения двух растворов разных веществ с неодинаковой концентрацией.
- 72. Причина возникновения диффузионного потенциала заключается в:
 - а) различной природе растворённых веществ;
 - б) специфических свойствах растворителя;
 - в) влиянии внешних условий (температуры, давления и т.д.);
 - г) различной подвижности ионов растворённых веществ.
- 73. Диффузионный потенциал возникнет при соприкосновении:
 - а) двух растворов одного и того же неэлектролита с различными концентрациями;
 - б) двух растворов одного и того же неэлектролита с одинаковыми концентрациями;

- в) двух растворов одного и того же электролита с разными концентрациями;
- г) двух растворов разных электролитов с одинаковыми концентрациями.

74. При смешивании растворов одного и того же вещества, но с разной концентрацией:

- а) более разбавленный раствор приобретает заряд, совпадающий по знаку с зарядом более подвижных ионов;
- б) более разбавленный раствор приобретает заряд, совпадающий по знаку с зарядом менее подвижных ионов;
- в) более концентрированный раствор приобретает знак заряда, совпадающий по знаку с зарядом менее подвижных ионов;
- г) более концентрированный раствор приобретает знак заряда, совпадающий по знаку с зарядом более подвижных ионов.

75. Диффузионный потенциал:

- а) существует в системе продолжительное время;
- б) возникает в биологических объектах при повреждении оболочек клеток;
- в) постепенно с завершением процесса диффузии в течение 1-2 часов уменьшается до нуля;
- г) сохраняет неизменным своё значение на протяжении всего периода существования.

76. Мембранный потенциал возникает:

- а) при неравномерном распределении ионов одного и того же вида по обе стороны мембраны;
- б) в результате обмена ионами между самой мембраной и раствором;
- в) в результате обмена электронами между мембраной и ионами в растворе;
- г) вследствие перехода электронов через мембрану от одних ионов к другим.

77. Особенностью мембранного потенциала является то, что в соответствующей ему электродной реакции:

- а) принимают участие только электроны;
- б) не принимают участие электроны;
- в) происходит обмен только ионами между мембраной и раствором;
- г) происходит обмен, как ионами, так и электронами между мембраной и раствором.

78. В ионо-селективных или мембранных электродах по обе стороны мембраны:

- а) в растворе присутствуют одни и те же ионы с одинаковой концентрацией;
- б) в растворе присутствуют разные ионы, но с одинаковой концентрацией;
- в) в растворе присутствуют одни и те же ионы, но с разной концентрацией;
- г) в растворе присутствуют разные ионы с неодинаковой концентрацией.

79. Концентрация определяемых ионов в мембранном электроде должна быть:

- а) постоянной с внутренней стороны мембраны;
- б) постоянной как с внешней, так и с внутренней стороны мембраны;
- в) постоянной с внешней стороны мембраны;
- г) одинаковой как с внешней, так и с внутренней стороны мембраны.

80. Разность потенциалов мембранного электрода зависит:

- а) только от потенциала, возникающего на внутренней стороне мембраны;
- б) от потенциала, возникающего на внешней стороне мембраны;
- в) от концентрации определяемых ионов в растворе с внутренней стороны мембраны;
- г) от концентрации определяемых ионов в растворе с внешней стороны мембраны.

81. Гальванические элементы:

- а) являются источниками постоянного тока;
- б) являются источниками переменного тока;
- в) преобразуют химическую энергию, выделяющуюся при протекании окислительновосстановительной реакции в электрическую;
- г) преобразуют химическую энергию, выделяющуюся при протекании окислительновосстановительной реакции, в тепловую или механическую.

82. Химическим гальваническим элементом является:

- а) элемент, составленный из двух различных металлических электродов с неодинаковыми электродными потенциалами;
- б) элемент, составленный из двух одинаковых металлических электродов, погруженных в растворы одной и той же соли, но с различной активностью ионов металла;
- в) элемент, составленный из двух одинаковых металлических электродов, погруженных в растворы одной и той же соли и с одинаковой активностью в них ионов металла;
- г) элемент, составленный из двух разных редокс электродов, имеющих неодинаковые значения электродных потенциалов.

83. Концентрационным гальваническим элементом является:

- а) элемент, составленный из двух различных металлических электродов, опущенных в растворы соответствующих солей с одинаковой концентрацией ионов металла в них;
- б) элемент, составленный из двух одинаковых металлических электродов, погруженных в растворы одной и той же соли, но с разной концентрацией ионов металла.
- в) элемент, составленный из двух разных редокс электродов, имеющих одинаковое значение электродных потенциалов;
- г) элемент, составленный из двух различных мембранных электродов.

84. В гальваническом элементе процесс окисления протекает:

- а) на электроде, имеющем большее значение электродного потенциала;
- б) на катоде;
- в) на электроде, имеющем меньшее значение электродного потенциала;
- г) на аноде.

85. В гальваническом элементе процесс восстановления протекает:

- а) на электроде, имеющем большее значение электродного потенциала;
- б) на катоде;
- в) на электроде, имеющем меньшее значение электродного потенциала;
- г) на аноде.

86. Для гальванического элемента электродвижущая сила определяется по уравнению э.д.с. =

 $E_2 - E_1$, где:

- а) E_2 потенциал анода;
- б) E_2 потенциал катода;
- в) E_1 потенциал анода;
- Γ) E_1 потенциал катода.

87. Для медно – цинкового элемента Якоби – Даниэля электродвижущая сила равна:

- а) э.д.с. = $E_{Zn} E_{Cu}$;
- б) э.д.с. = $E_{Zn} + E_{Cu}$;
- в) э.д.с. = $E_{Cu} E_{Zn}$;
- Γ) э.д.с. = $E_{Zn} = E_{Cu}$.

- 88. Для гальванического элемента Якоби Даниэля потенциал медного электрода E_{Cu} = 0.337В, а потенциал цинкового электрода $E_{Zn} = -0.763$ В. Величина э.д.с. при этом будет равна:
 - a) 1,1B;
 - б) 0,426В;
 - B) -0.426B;
 - г) 0.824B.
- 89. Схема гальванического элемента, образованного стандартными железным и серебряным электродами может быть представлена следующим образом:
 - a) Ag \mid AgNO₃ \mid \mid Fe(NO₃)₂ \mid Fe;
 - б) Fe | Fe(NO₃)₂ | | AgNO₃ | Ag;
 - B) Ag | Fe(NO₃)₂ | | AgNO₃ | Fe; г) Fe | Fe(NO₃)₃ | AgNO₃ | Ag.
- 90. При работе концентрационного химического элемента:
 - а) происходит протекание химической реакции;
 - б) выравниваются концентрации (активности) ионов металла около обоих электродов;
 - в) происходит переход ионов металла против градиента их концентрации;
 - г) происходит осаждение ионов металла из раствора на обоих электродах.
- 91. При работе концентрационного химического элемента, составленного из двух металлических электродов:
 - а) в раствор переходят ионы металла с электрода, имеющего меньшее значение электродного потенциала;
 - б) в раствор переходят ионы металла с электрода, имеющего большее значение электродного потенциала;
 - в) оседают из раствора ионы металла на электроде, имеющем большее значение электродного потенциала;
 - г) оседают из раствора ионы металла на электроде, имеющем меньшее значение электродного потенциала.
- 92. Э.д.с. концентрационного гальванического элемента рассчитывается по формуле ($a_2 > a_1$):

a) э.д.с. =
$$E_1 + E_2 + RT \left(\ln \frac{a_1}{a_2} \right);$$

б) э.д.с. =
$$E_1 - E_2 + \frac{RT}{nF} \left(\ln \frac{a_1}{a_2} \right);$$

в) э.д.с. =
$$E_1/E_2 - RT \left(\lg \frac{a_2}{a_1} \right)$$
;

$$\Gamma$$
) э.д.с. = $\frac{RT}{nF} \ln \frac{a_2}{a_1}$.

- 93. Контрационный гальванический элемент будет работать до тех пор пока:
 - а) активности ионов металла в обоих растворах не станут меньше 1моль/дм³;
 - б) активности ионов металла в обоих растворах не станут равны нулю;
 - в) активности ионов металла в обоих растворах не сравняются между собой;
 - г) потенциалы обоих его электродов не сравняются между собой.

- 94. Схема концентрационного гальванического элемента представлена в случае:
 - a) Cu $\mid \text{Cu(NO}_3)_2 \mid \mid \text{Cu(NO}_3)_2 \mid \text{Cu};$

$$a_{1} < a_{2}$$

$$a_1 < a_2$$

B) Ag
$$\mid$$
 AgNO₃ \mid AgNO₃ \mid Ag;

$$a_{1}=a_{2}$$

$$\Gamma$$
) Fe | Fe(NO₃)₂ | | Cu(NO₃)₂ | Cu.

- $a_{1}=a_{2}$
- 95. Рабочим или индикаторным электродом в потенциометрии является электрод:
 - a) потенциал которого остается постоянным и не зависит от состояния исследуемого раствора;
 - б) потенциал которого зависит от концентрации исследуемого вещества;
 - в) потенциал которого условно принят равным нулю;
 - г) потенциал которого имеет меньшее значение.
- 96. Электродом сравнения в потенциометрии является электрод, потенциал которого:
 - а) сохраняет постоянное значение независимо от состояния исследуемого раствора;
 - б) условно принят равным нулю;
 - в) всегда имеет положительное значение;
 - г) имеет большее значение.
- 97. В отличие от титриметрических потенциометрические методы анализа:
 - а) позволяют проводить определения только в прозрачных растворах;
 - б) позволяют проводить определения в мутных и окрашенных растворах;
 - в) не требуют присутствия индикатора;
 - г) могут осуществляться непосредственно в биологических объектах, т.е. «in vivo».
- 98. Прямая потенциометрия (ионометрия) это потенциометрический метод, в котором индикаторным электродом является:
 - а) соответствующий мембранный электрод;
 - б) металлический электрод;
 - в) водородный электрод;
 - г) стеклянный электрод.
- 99. С помощью потенциометрического титрования можно определить:
 - а) концентрацию соли в растворе:
 - б) концентрацию неэлектролита в растворе;
 - в) концентрацию кислоты в анализируемом растворе;
 - г) концентрацию основания в анализируемом растворе.
- 100. При определении кислоты в растворе с помощью метода потенциометрического титрования в качестве индикаторного электрода используют, как правило:
 - а) водородный электрод;
 - б) хингидронный электрод;
 - в) хлорсеребряный электрод;
 - г) стеклянный электрод.
- 101. Недостатком стеклянного электрода является то, что он:
 - а) не может быть использован в широком диапазоне значений рН;

- б) чувствителен к различным примесям, содержащимся в растворе и способен «отравляться» ими;
- в) не может быть использован, если в исследуемом растворе содержатся сильные окислители или восстановители;
- г) обладает большой хрупкостью.
- 102. Солевой мостик в гальванических элементах используют для:
 - а) осуществления контакта между электродами;
 - б) устранения влияния диффузионного потенциала;
 - в) ускорения процессов диффузии между растворами;
 - г) предохранения электродов от коррозии.
- 103. Солевой мостик в гальванических элементах заполняется обычно раствором хлорида калия, так как:
 - а) этот электролит в растворе не подвергается гидролизу;
 - б) данная соль не может химически взаимодействовать с материалом любого электрода;
 - в) ионы К⁺ и Cl⁻ обладают одинаковой подвижностью в водном растворе;
 - Γ) ионы K^+ не могут восстанавливаться на катоде, а ионы Cl^- окисляться на аноде.
- 104. Потенциал повреждения, образующийся в биологических системах при разрушении оболочек клеток:
 - а) по своей природе является диффузионным;
 - б) обычно достигает величины порядка 30 40 мV;
 - в) может достигать величины нескольких десятков вольт;
 - г) сохраняет неизменным свое значение на протяжении нескольких суток, а затем практически мгновенно уменьшается до нуля.
- 105. В уравнении Нернста, используемом для расчета электродного потенциала значение температуры приводится по:
 - а) шкале Фаренгейта;
 - б) шкале Цельсия;
 - в) шкале Кельвина;
 - г) любой из трех вышеперечисленных шкал.
- 106. В уравнении Нернста, с помощью которого рассчитывается потенциал металлического электрода, для количественной характеристики ионов металлов используют их:
 - а) процентную концентрацию;
 - б) молярную концентрацию;
 - в) моляльную концентрацию;
 - г) мольную долю в растворе.

Тесты к теме: Поверхностные явления. Адсорбция

- 1. Подвижная поверхность раздела возникает на границе:
 - а) жидкость газ;
 - б) жидкость твёрдое тело;
 - в) жидкость жидкость;
 - г) твёрдое тело газ.
- 2. Неподвижная поверхность раздела возникает на границе:
 - а) жидкость газ;
 - б) жидкость твёрдое тело;

- в) жидкость жидкость;
- г) твёрдое тело газ.

3. Сорбцией называется:

- a) притяжение (сцепление или прилипание) приведённых в контакт поверхностей двух конденсированных фаз;
- б) самопроизвольное изменение формы граничной поверхности;
- в) самопроизвольное накопление (поглощение) газообразного или растворённого в жидкости вещества на поверхности либо в объеме конденсированной фазы (твёрдого тела или жидкости);
- г) образование поверхности раздела между двумя несмешивающимися фазами.

4. Адгезией называется:

- a) притяжение (сцепление или прилипание) приведённых в контакт поверхностей двух конденсированных фаз;
- б) самопроизвольное изменение формы граничной поверхности;
- в) самопроизвольное накопление (поглощение) газообразного или растворённого в жидкости вещества на поверхности либо в объеме конденсированной фазы (твёрдого тела или жидкости);
- г) образование поверхности раздела между двумя несмешивающимися фазами.

5. Адсорбция – это:

- а) накопление частиц адсорбтива на поверхности адсорбента;
- б) накопление частиц адсорбента на поверхности адсорбтива;
- в) накопление частиц адсорбата на поверхности адсорбтива;
- г) накопление частиц адсорбата внутри адсорбента.

6. Абсорбция – это:

- а) объемное поглощение газообразного вещества конденсированной фазой;
- б) процесс смешивания между собой различных газов;
- в) объемное поглощение растворённого в жидкости вещества твердой фазой;
- г) процесс смешивания между собой двух взаиморастворимых жидкостей.

7. Физической сорбцией называется процесс:

- а) накопления одного вещества на поверхности или в объеме другого вещества, происходящий за счёт действия сил химической связи;
- б) накопления одного вещества на поверхности или в объеме другого вещества, происходящий за счёт действия межмолекулярных или ван дер ваальсовых сил;
- в) накопления одного вещества на поверхности или в объеме другого вещества, сопровождающийся образованием новых химических соединений;
- г) накопления сорбтива на поверхности или в объеме сорбента, не сопровождающийся химическим взаимодействием, приводящим к образованию новых веществ.

8. Хемосорбция – это процесс избирательного накопления сорбтива на поверхности или в объеме сорбента:

- происходящий за счёт химического взаимодействия и приводящий к образованию новых веществ;
- б) при котором частицы обоих взаимодействующих веществ не теряют своей индивидуальности;
- в) происходящий за счёт сил кулоновского взаимодействия между заряженными частицами, которые при этом не теряют своей индивидуальности;

- г) сопровождающийся образованием новых соединений, которые не образуют самостоятельную фазу.
- 9. Физическая сорбция в отличие от хемосорбции:
 - а) является обратимым процессом;
 - б) протекает с незначительным тепловым эффектом (Q ≤ 20кДж/моль)
 - в) является необратимым процессом;
 - г) определяется только временем диффузии сорбтива к поверхности сорбента и не зависит от активационного фактора.
- 10. Хемосорбция в отличие о физической сорбции:
 - а) является более избирательным процессом и очень сильно зависит от природы сорбента и сорбтива;
 - б) протекает с гораздо большей скоростью и не зависит от температуры;
 - в) сопровождается значительным тепловым эффектом ($Q \ge 40 \text{ кДж/моль}$);
 - г) является необратимым процессом.
- 11. Капиллярная конденсация это:
 - а) разновидность химической сорбции;
 - б) разновидность физической сорбции;
 - в) процесс, протекающий при повышенной температуре ($t > t_{\text{кип. жидк.}}$);
 - г) процесс поглощения газа твердым пористым адсорбентом, сопровождающийся его частичной конденсацией.
- 12. Повышение температуры:
 - а) приводит к увеличению физической сорбции;
 - б) приводит к увеличению химической сорбции;
 - в) не влияет как на физическую, так и на химическую сорбцию;
 - г) приводит к уменьшению физической сорбции.
- 13. Древесный уголь, сажа, графит лучше адсорбируют:
 - а) неполярные органические жидкости;
 - б) полярные органические и неорганические жидкости;
 - в) электролиты из водных растворов;
 - г) неэлектролиты из водных растворов.
- 14. Полярные адсорбенты (ионные кристаллы) лучше адсорбируют:
 - а) неполярные органические жидкости;
 - б) полярные органические и неорганические жидкости;
 - в) электролиты из водных растворов;
 - г) неэлектролиты из водных растворов.
- 15. Величина адсорбции Г в системе СИ измеряется в:
 - а) моль/л;
 - б) моль/ M^2 ;
 - в) моль/ cm^2 ;
 - г) моль/кг.
- 16. Поверхностное натяжение это:
 - а) суммарная внутренняя энергия молекул, находящихся в поверхностном слое;
 - б) избыточная суммарная внутренняя энергия молекул, находящихся в поверхностном слое площадью 1 м² или 1см² по сравнению с суммарной внутренней энергией молекул, расположенных в таком же по размерам слое, но в глубине фазы;

- в) работа, которую нужно совершить, чтобы переместить молекулы из глубины фазы для создания поверхности площадью 1м² или 1см²;
- г) суммарная потенциальная энергия молекул, находящихся в поверхностном слое плошалью 1m^2 или 1cm^2 .

17. Поверхностное натяжение жидкости:

- а) не зависит от природы газовой фазы, с которой она граничит;
- б) не зависит от температуры жидкости;
- в) не зависит от внешнего давления;
- г) не зависит от площади поверхности жидкости.

18. Поверхностное натяжение индивидуальной жидкости:

- а) возрастает с уменьшением температуры;
- б) возрастает с увеличением температуры;
- в) возрастает с увеличением взаимодействия между её молекулами;
- г) возрастает с увеличением давления.

19. Высокое значение поверхностного натяжения воды при 298 К по сравнению с другими жидкостями обусловлено:

- а) ее значительной диэлектрической проницаемостью;
- б) формой и размерами ее молекул;
- в) способностью молекул H₂O образовывать межмолекулярные водородные связи;
- г) величиной ее относительной молекулярной массы.

20. Поверхностная энергия жидкости может быть уменьшена:

- а) за счет изменения способа расположения ее молекул друг относительно друга;
- б) за счет уменьшения площади ее поверхности;
- в) за счет уменьшения ее поверхностного натяжения;
- г) за счет уменьшения ее температуры.

21. По отношению к Н₂О ПАВ являются:

- а) такие органические соединения как спирты, амины, карбоновые кислоты;
- б) насыщенные и ненасыщенные углеводороды;
- в) ароматические углеводороды;
- г) неорганические и органические электролиты.

22. По отношению к Н₂О ПИВ являются:

- а) алканы и циклоалканы;
- б) сильные неорганические кислоты;
- в) соли и щелочи;
- г) моносахариды.

23. По отношению Н2О ПНВ являются:

- а) соли азотной кислоты;
- б) соли уксусной кислоты;
- в) глюкоза;
- г) сахароза.

24. Поверхностно – активные вещества поверхностное натяжение растворителя:

- а) повышают;
- б) понижают;
- в) в зависимости от концентрации могут как повышать, так и понижать;
- г) не изменяют.

- 25. Поверхностно инактивные вещества поверхностное натяжение растворителя:
 - а) повышают;
 - б) уменьшают в очень сильной мере;
 - в) не изменяют;
 - г) могут, как повышать, так и понижать в зависимости от своей концентрации.
- 26. Поверхностно неактивные вещества:
 - а) повышают поверхностное натяжение растворителя, только присутствуя в растворах в больших количествах;
 - б) изменяют поверхностное натяжение растворителя только при малых концентрациях;
 - в) практически не изменяют поверхностное натяжение растворителя, присутствуя в растворе даже в значительных количествах;
 - г) не способны растворяться в растворителе.
- 27. При растворении ПАВ концентрация их молекул в поверхностном слое жидкости по сравнению с таким же слоем, но расположенным в ее глубине:
 - а) практически одинаковая;
 - б) значительно выше:
 - в) всегда во много раз ниже;
 - г) может быть как ниже, так и выше в зависимости от времени наблюдения.
- 28. При растворении ПИВ концентрация их частиц в поверхностном слое жидкости по сравнению с таким же слоем, но расположенным в ее глубине:
 - а) практически одинаковая;
 - б) значительно выше;
 - в) всегда во много раз ниже;
 - г) может быть как ниже, так и выше в зависимости от времени наблюдения.
- 29. Уравнение Гиббса для расчета величины адсорбции Г на границе раздела жидкость газ выглядит следующим образом:

 - a) $\Gamma = K \cdot C^{1/n}$; 6) $\Gamma = \Gamma_{\infty} \cdot \frac{c}{c+K}$; B) $\Gamma = -\frac{c}{RT} \cdot \frac{d\sigma}{dc}$; $\Gamma = -\frac{\Delta\sigma}{\Delta c} \cdot \frac{c}{RT}$.

- 30. Поверхностная активность вещества д показывает:
 - а) как изменяется поверхностное натяжение раствора при увеличении концентрации растворенного вещества в 2 раза;
 - б) во сколько раз увеличивается поверхностное натяжение раствора при увеличении концентрации растворенного вещества в 2 раза;
 - в) во сколько раз уменьшается поверхностное натяжение раствора при уменьшении концентрации ПАВ в 2 раза;
 - г) как изменяется поверхностное натяжение раствора при увеличении концентрации растворенного вещества на единицу.
- 31. Поверхностная активность вещества д рассчитывается по формуле:

 - a) $g = \frac{\Delta \sigma}{\Delta C}$; 6) $g = -\frac{\Delta \sigma}{\Delta C}$; B) $g = dc \cdot d\sigma$; r) $g = -\frac{dC}{d\sigma}$.
- 32. Величина адсорбции Г имеет положительное значение при:
 - a) dσ>0 и dc>0;
 - б) dσ<0 и dc>0:
 - в) dσ<0 и dc<0;
 - г) $d\sigma = 0$ и dc > 0.
- 33. Величина адсорбции Г имеет отрицательное значение при:
 - а) $d\sigma > 0$ и dc > 0;
 - б) dσ<0 и dc>0;
 - в) dσ<0 и dc<0:</p>
 - г) $d\sigma = 0$ и dc > 0.
- 34. Поверхностная активность ПАВ имеет наибольшее значение:
 - а) при его малых концентрациях в растворе:
 - б) при его высоких концентрациях в растворе;
 - в) независимо от его концентрации в растворе;
 - г) при его концентрации в растворе равной 1 моль/л.
- 35. Поверхностная активность ПАВ имеет наименьшее значение при:
 - а) при его малых концентрациях в растворе;
 - б) при его высоких концентрациях в растворе;
 - в) независимо от его концентрации в растворе;
 - г) при его концентрации в растворе равной 1 моль/л.
- 36. К ПАВ относятся вещества, молекулы которых:
 - а) состоят только из гидрофобной углеводородной цепи;
 - б) являются симметричными и обе их части являются или гидрофильными, или гидрофобными;
 - в) имеют несимметричное строение и состоят из сравнительно небольшой полярной группы и длинного углеводородного радикала;
 - г) могут иметь самое различное строение.
- 37. Полярная и неполярная части молекулы ПАВ соединяются между собой:
 - а) ковалентной связью;

- б) ионной связью;
- в) водородной связью;
- г) межмолекулярными связями.

38. Поверхностная активность ПАВ возрастает с:

- а) увеличением длины его углеводородного радикала;
- б) уменьшением длины его углеводородного радикала;
- в) увеличением его растворимости;
- г) уменьшением его растворимости.

39. Поверхностная активность ПАВ равна нулю:

- а) в области малых концентраций;
- б) в области больших концентраций;
- в) при $\Gamma = \Gamma_{\infty}$;
- г) ни при каких условиях не может быть равна нулю.

40. Зависимость поверхностной активности ПАВ от длины его углеводородного радикала определяется:

- а) изотермой его адсорбции;
- б) правилом Дюкло-Траубе;
- в) уравнением Гиббса;
- г) уравнением Лэнгмюра.

41. К молекулярным или неионогенным ПАВ относятся:

- а) алифатические спирты;
- б) соли жирных карбоновых кислот;
- в) сложные эфиры:
- г) третичные амины.

42. К ионогенным катионактивным ПАВ относятся:

- а) вторичные или третичные амины;
- б) некоторые высшие карбоновые кислоты;
- в) простые эфиры;
- г) ароматические спирты.

43. К ионогенным анионактивным ПАВ относятся:

- а) фенолы;
- б) соли жирных карбоновых кислот;
- в) сульфоалканы;
- г) сложные эфиры.

44. Амфолитные ПАВ:

- а) являются электронейтральными молекулами;
- б) содержат в молекуле одну или несколько гидрофильных групп, способных быть как донорами, так и акцепторами протонов в зависимости от рН раствора;
- в) могут быть как ионогенными, так и неионогенными в зависимости от их концентрации в растворе;
- г) являются симметричными молекулами, гидрофильная и гидрофобная части которых имеют одинаковые размеры.
- 45. Площадь S_o , занимаемая одной молекулой ПАВ в поверхностном слое жидкости при $\Gamma = \Gamma_\infty$, зависит от:

- а) размеров молекулы ПАВ;
- б) длины её углеводородного радикала;
- в) размеров её гидрофильной части;
- г) концентрации ПАВ в растворе.
- 46. В насыщенном мономолекулярном слое молекулы ПАВ располагаются:
 - а) горизонтально поверхности жидкости;
 - б) перпендикулярно поверхности жидкости;
 - в) беспорядочно;
 - г) или горизонтально, или вертикально поверхности жидкости в зависимости от концентрации ПАВ в растворе.
- 47. Площадь, занимаемая одной молекулой ПАВ в поверхностном слое при их малой концентрации в растворе зависит от:
 - а) размеров молекулы ПАВ;
 - б) размеров её гидрофильной части;
 - в) концентрации ПАВ в растворе;
 - г) температуры раствора.
- 48. Площадь S_o , занимаемую одной молекулой ПАВ в насыщенном мономолекулярном слое при $\Gamma = \Gamma_\infty$, можно рассчитать по формуле:
 - a) $S_0 = v \cdot \rho$;
 - δ) $S_o = Γ \cdot M$;
 - в)S_o = N_o· Γ ;
 - $\Gamma) S_{\wp} = \frac{1}{\Gamma_{\wp\wp} \cdot N_{\wp}} \, .$
- 49. Длину молекулы ПАВ можно рассчитать по формуле:
 - a) $1 = \mathbf{v} \cdot \mathbf{p}$;
 - δ) 1 = ρ/m;
 - B) $1 = M \cdot \rho/\Gamma_0$;
 - Γ) $l = \frac{\Gamma_{00} \cdot M}{\sigma}$
- 50. Поверхность твёрдого адсорбента:
 - а) является однородной;
 - б) обладает одинаковыми адсорбционными свойствами;
 - в) содержит в своём составе так называемые адсорбционные или активные центры;
 - г) содержит малые участки с повышенным запасом свободной поверхностной энергии Гиббса.
- 51. Адсорбция на твёрдой поверхности в отличие от адсорбции на поверхности жидкости:
 - а) может быть как мономолекулярной, так и полимолекулярной;
 - б) может осуществляться только за счёт действия сил физической природы;
 - в) происходит, в первую очередь, на её определённых участках, обладающих повышенным запасом внутренней энергии;
 - г) всегда является необратимым процессом.
- 52. Мономолекулярная адсорбция газа по Лэнгмюру на твёрдом адсорбенте:
 - а) происходит на всей поверхности адсорбента;
 - б) происходит только на активных центрах адсорбента;
 - в) является обратимым процессом;

- г) осуществляется только за счёт действия сил химической природы.
- 53. Уравнение Лэнгмюра, описывающее адсорбцию газа на твёрдой поверхности, имеет вид:

 - a) $\Gamma = -\frac{\Delta \delta}{\Delta C} \cdot \frac{C}{RT}$; 6) $\Gamma = \Gamma_{\infty} \cdot \frac{P}{E+P}$;

 - $\begin{array}{l} B) \ \Gamma = p \cdot \frac{E+p}{\Gamma_{00}}; \\ \Gamma) \ \Gamma_{\infty} = \Gamma \cdot \frac{E+p}{p}. \end{array}$
- 54. Уравнение Лэнгмюра позволяет описать:
 - а) любой участок изотермы адсорбции;
 - б) только тот участок изотермы адсорбции, который имеет прямолинейный характер;
 - в) только тот участок изотермы адсорбции, который изображается параболической кривой;
 - г) только тот участок изотермы адсорбции, который изображается прямой, параллельной оси абсцисс.
- 55. Уравнение Фрейндлиха позволяет описать:
 - а) любой участок изотермы адсорбции;
 - б) только тот участок изотермы адсорбции, который имеет прямолинейный характер;
 - в) только тот участок изотермы адсорбции, который изображается параболической кривой;
 - г) только тот участок изотермы адсорбции, который изображается прямой, параллельной оси абсцисс.
- 56. Уравнение Фрейндлиха для адсорбции газа имеет следующий вид:
 - a) $\Gamma = \Gamma_{\infty} \cdot \frac{\mathbb{P}}{\mathbb{R} + \mathbb{p}}$;
 - $\mathsf{G)} \quad \Gamma = \mathbf{K} \! \cdot \! \mathbf{p}^{1/n};$
 - B) $\lg\Gamma = \lg K + \frac{1}{m} \cdot \lg P$;
 - Γ) $\Gamma = \mathbf{n} \cdot \mathbf{p}^k$.
- 57. Удельную поверхность твёрдого адсорбента можно рассчитать по формуле:
 - a) $S_{VJI} = \Gamma_{\infty} \cdot N_A$;
 - δ) $S_{yx} = Γ_∞ · N_A · K;$
 - B) $S_{yz} = \Gamma \cdot_{\infty} N_A \cdot S_o$;
 - Γ) $S_{VA} = \Gamma_{\infty} \cdot N_A / S_o$.
- 58. Константа К в уравнении Фрейндлиха для адсорбции газа представляет собой:
 - а) величину адсорбции Г при равновесном давлении газа равном единице;
 - б) равновесное давление газа, при котором все активные центры, расположенные на поверхности твердого адсорбента, насыщены молекулами газа;
 - в) величину адсорбции Г при равновесном давлении газа равном атмосферному;
 - г) величину адсорбции Γ_{∞} при данных внешних условиях.
- 59. Предельное значение адсорбции газа Γ_{∞} на данном адсорбенте:
 - а) не зависит от величины температуры;
 - б) с увеличением температуры уменьшается;
 - в) с увеличением температуры увеличивается;
 - г) зависит от температуры сложным образом.

- 60. Предельное значение адсорбции газа Γ_{∞} на данном адсорбенте с увеличением температуры:
 - а) достигается при более низком равновесном давлении газа р;
 - б) достигается при более высоком равновесном давлении газа р;
 - в) достигается всегда при одном и том же равновесном давлении газа р;
 - г) не изменяет своей величины.
- 61. При одинаковых внешних условиях на активированном угле лучше всего будет адсорбироваться газ:
 - а) кислород;
 - б) водород;
 - в) азот;
 - г) хлор.
- 62. Из воздуха на твердом адсорбенте лучше всего будет адсорбироваться:
 - а) водяной пар;
 - б) углекислый газ;
 - в) кислород;
 - г) азот.
- 63. Адсорбция газа на твердом адсорбенте зависит от:
 - а) его цвета и запаха;
 - б) природы адсорбента и адсорбтива;
 - в) температуры кипения газа;
 - г) равновесного давления газа над твердым адсорбентом.
- 64. Согласно теории БЭТ Поляни образование дополнительных адсорбционных слоев на твердом адсорбенте:
 - а) происходит за счет сил межмолекулярного взаимодействия;
 - б) происходит в результате конденсации молекул пара;
 - в) происходит только после завершения формирования первого мономолекулярного слоя:
 - г) возможно при незаконченном первом мономолекулярном слое.
- 65. При адсорбции из растворов на твердом адсорбенте:
 - а) всегда происходит накопление только растворителя;
 - б) может происходить как адсорбция растворенного вещества, так и растворителя;
 - в) осаждаются только молекулы растворенного вещества, независимо от его природы;
 - г) могут осаждаться как молекулы, так и ионы растворенного вещества.
- 66. Величину адсорбции Γ из растворов на твердом адсорбенте можно рассчитать по формуле:
 - a) $\Gamma = \frac{(C_0 C) \cdot V}{C}$
 - $\Gamma = \frac{(C_0 C) \cdot m}{V};$
 - B) $\Gamma = \frac{(C C_0)}{C}$;
 - $\Gamma) \quad \Gamma = -\frac{{\binom{n}{2}} {\binom{n}{2} \binom{n}{2} m}}{n}.$
- 67. Соотношение между адсорбированными на твердом адсорбенте молекулами растворенного вещества и растворителя зависит от:

- а) времени, в течение которого происходит процесс адсорбции;
- б) собственной адсорбционной способности этих соединений на твердом адсорбенте;
- в) концентрации раствора;
- г) массы адсорбента.
- 68. На активированном угле из бинарной системы бензол анилин:
 - а) лучше будет адсорбироваться бензол;
 - б) лучше будет адсорбироваться анилин;
 - в) оба вещества будут адсорбироваться в одинаковой мере;
 - г) оба вещества не будут адсорбироваться.
- 69. На силикагеле (SiO₂) из бинарной системы бензол анилин:
 - а) лучше будет адсорбироваться бензол;
 - б) лучше будет адсорбироваться анилин;
 - в) оба вещества будут адсорбироваться в одинаковой мере;
 - г) г) оба вещества не будут адсорбироваться.
- 70. С помощью гидрофильного адсорбента (глина, силикагель) ПАВ лучше извлекается из:
 - а) воды;
 - б) бензола;
 - в) гексана;
 - г) этанола.
- 71. С помощью гидрофобного адсорбента (уголь, графит, парафин) ПАВ лучше извлекается из:
 - а) воды;
 - б) бензола;
 - в) гексана;
 - г) этанола.
- 72. Отрицательная адсорбция на твердом адсорбенте происходит:
 - а) если вместо растворенного вещества адсорбируется растворитель;
 - б) при использовании разбавленных растворов;
 - в) при использовании концентрированных растворов;
 - г) если растворитель и адсорбент очень сильно различаются своей полярностью.
- 73. Специфическая или избирательная ионная адсорбция происходит на:
 - а) неполярном адсорбенте;
 - б) любом твердом адсорбенте;
 - в) ионных кристаллах;
 - г) твердом адсорбенте, поверхность которого образована полярными молекулами, способными к диссоциации в водном растворе.
- 74. Адсорбционная способность ионов в водном растворе зависит от:
 - а) величины их заряда;
 - б) степени гидратации;
 - в) радиуса в гидратированном состоянии;
 - г) массы иона.
- 75. При примерно одинаковом радиусе, с увеличением величины заряда адсорбционная способность ионов:

- а) возрастает;
- б) уменьшается;
- в) остается неизменной;
- а) изменяется сложным образом.
- 76. При одинаковой величине заряда с возрастанием радиуса ионов их адсорбционная способность:
 - а) а)возрастает;
 - б) уменьшается;
 - в) остается неизменной;
 - г) изменяется сложным образом.
- 77. Наличие гидратной оболочки у иона:
 - а) увеличивает его адсорбционную способность;
 - б) ослабляет его адсорбционную способность;
 - в) не влияет на его адсорбционную способность;
 - г) влияет на его адсорбционную способность сложным образом.
- 78. Для однозарядных катионов щелочных металлов в случае их адсорбции из водного раствора лиотропный ряд выглядит следующим образом:
 - a) $Cs^+>Rb^+>K^+>Na^+>Li^+$;
 - 6) $Cs^+ < Rb^+ < K^+ < Na^+ < Li^+;$
 - B) $Li^{+}>Cs^{+}>Na^{+}>K^{+}>Rb^{+};$
 - Γ) $Li^+ < Cs^+ < Na^+ < K^+ < Rb^+$.
- 79. Вид потенциалопределяющих ионов при их избирательной адсорбции на ионном кристалле определяется с помощью правила:
 - а) Дюкло -Траубе;
 - б) Шульца Гарди;
 - в) Панета Фаянса;
 - г) Гендерсона Гассельбаха.
- 80. Эквивалентная ионная адсорбция:
 - а) характерна только для слабых электролитов;
 - б) характерна только для сильных электролитов;
 - в) характерна для любого электролита;
 - г) не характерна никакому электролиту.
- 81. Для однозарядных галогенид анионов в случае их адсорбции из водных растворов лиотропный ряд выглядит следующим образом:
 - a) I-<Br-<Cl-<F-;
 - б) I->Br->Cl->F-;
 - в) F->I->Cl->Вr-;
 - г) F-<I-<Cl-<Br-;
- 82. Из ионов щелочных металлов в водном растворе наибольшей адсорбционной способностью обладает:
 - a) Cs^+ ;
 - δ) Rb⁺;
 - в) K⁺;
 - г) Na⁺.

- 83. Из галогенид-анионов, находящихся в водном растворе, наименьшей адсорбционной способностью обладает:
 а) Г;
 б) Вг;
 в) СГ;
 г) F.
- 84. На твердом ионном адсорбенте $BaSO_4$, согласно правила Панета Фаянса, из раствора, содержащего смесь ионов Ba^{2+} , Cl^- , Na^+ , NO_3^- , в первую очередь будет адсорбироваться:
 - a) Ba^{2+} ;
 - б) Na⁺;
 - в) Cl⁻;
 - г) NO₃-.
- 85. Двойной электрической слой на поверхности твердого адсорбента образуется:
 - а) при эквивалентной ионной адсорбции;
 - б) при избирательной ионной адсорбции;
 - в) при ионообменной адсорбции;
 - г) всегда, независимо от вида ионной адсорбции.
- 86. Катионитом будет являться адсорбент, содержащий в своем составе многочисленные:
 - а) $-SO_3H$ группы;
 - б) –COOH группы;
 - в) $-NH_2 группы;$
 - г) –OH группы.
- 87. Анионитом будет являться адсорбент, содержащий в своем составе многочисленные:
 - a) −SO₃Na − группы;
 - б) −NH₃⁺Cl⁻ группы;
 - в) $-NH_2 группы;$
 - Γ) -SH группы.
- 88. Аниониты диссоциируют с выделением в раствор:
 - а) катионов;
 - б) анионов;
 - в) OH⁻ ионов;
 - Γ) H^+ -ионов.
- 89. Катиониты диссоциируют с выделением в раствор:
 - а) катионов;
 - б) анионов;
 - в) ОН-ионов;
 - г) H⁺-ионов.
- 90. Хроматографические методы анализа используются для:
 - а) определения размеров молекул растворённых веществ;
 - б) разделения веществ в смесях;
 - в) определения количественного и качественного состава смесей различных соединений;
 - г) выделения индивидуальных веществ из смесей.
- 91. Хроматографические методы анализа основаны на:

- а) различной способности индивидуальных веществ проходить через полупроницаемые мембраны;
- б) различной способности индивидуальных веществ проходить через диализационные мембраны;
- в) различной адсорбционной способности индивидуальных веществ;
- г) различной электропроводности растворов химических соединений.
- 92. В распределительной хроматографии подвижная и неподвижная фазы находятся в:
 - а) жидком агрегатном состоянии;
 - б) любом агрегатном состоянии;
 - в) жидком или твёрдом агрегатном состоянии;
 - г) твердом или газообразном состоянии.
- 93. Адсорбционная хроматография основана на различной способности отдельных компонентов смеси:
 - а) подвергаться электролитической диссоциации;
 - б) вступать в химическое взаимодействие с веществом неподвижной фазы;
 - в) вступать во взаимодействие с поверхностью адсорбента и удерживаться на его активных центрах;
 - г) проходить через диализационные мембраны.
- 94. В газо-жидкостной хроматографии неподвижная фаза находится в:
 - а) газообразном состоянии;
 - б) твёрдом состоянии;
 - в) жидком состоянии;
 - г) любом агрегатном состоянии.
- 95. К основным хроматографическим параметрам, характеризующим поведение веществ в колонке, относятся:
 - а) коэффициент распределения R_f;
 - б) время удерживания t_R;
 - в) удерживаемый объем V_R ;
 - г) коэффициент диффузии D.
- 96. Время удерживания t_R это время от момента ввода анализируемой пробы до:
 - а) полного элюирования вещества из колонки;
 - б) начала регистрации детектором индивидуального вещества, входящего в состав смеси;
 - в) регистрации самописцем максимума пика индивидуального вещества на хроматограмме;
 - г) окончания удерживания индивидуального вещества смеси на неподвижной фазе.
- 97. Основы хроматографического метода анализа были разработаны ученым:
 - а) Цветом;
 - б) Лэнгмюром;
 - в) Фрейндлихом;
 - г) Ребиндером.
- 98. Адсорбционная способность иона усиливается при:
 - а) уменьшении величины его заряда;
 - б) возрастании величины его заряда;

- в) уменьшении его радиуса;
- г) увеличении его радиуса.
- 99. На кристаллах AgI из раствора, содержащего смесь солей КF и CH₃COOAg, преимущественно будут адсорбироваться ионы:
 - a) K⁺;
 - б) Ғ;
 - в) Ag⁺;
 - Γ) CH₃COO⁻.
- 100. На кристаллах $Ca_3(PO_4)_2$ из раствора, содержащего смесь солей $CaCl_2$ и K_2SO_4 , преимущественно будут адсорбироваться ионы:
 - a) Ca²⁺;
 - б) K+;
 - в) Cl⁻;
 - r) SO₄²-.

Тесты к теме: Дисперсные системы. Коллоидные растворы

- 1. Степень дисперсности это:
 - а) диаметр частиц дисперсной фазы;
 - б) величина, обратная поперечному размеру частиц дисперсной фазы;
 - в) суммарная площадь поверхности частиц дисперсной фазы;
 - г) общая масса частиц дисперсной фазы.
- 2. Удельная поверхность это:
 - а) поверхность частиц дисперсной фазы, которые можно вплотную уложить на отрезке длиной в 1 м;
 - б) поверхность всех частиц дисперсной фазы, содержащихся в 1м³ золя;
 - в) общая поверхность всех частиц дисперсной фазы, имеющих суммарную массу 1кг;
 - г) общая поверхность всех частиц дисперсной фазы, имеющих суммарный объём 1 м³.
- 3. Системы, в которых вещество дисперсной фазы находится в виде отдельных молекул, называются:
 - а) истинными растворами;
 - б) молекулярно-дисперсными системами;
 - в) коллоидно-дисперсными системами;
 - г) грубодисперсными системами.
- 4. Термодинамически устойчивыми являются следующие дисперсные системы:
 - а) коллоидно-дисперсные системы;
 - б) грубодисперсные системы;
 - в) молекулярно-дисперсные системы;
 - г) ионно-дисперсные.
- 5. Размеры частиц дисперсной фазы в коллоидных системах имеют значение:
 - a) 10^{-2} M > d > 10^{-5} M:
 - 6) 10^{-5} M > d > 10^{-7} M;
 - B) $10^{-7} \text{M} > d > 10^{-9} \text{M}$;
 - Γ) $d < 10^{-9} M$.
- 6. Колллоидные системы:
 - а) являются гомогенными;
 - б) способны к опалесценции;
 - в) обладают наибольшей удельной поверхностью среди дисперсных систем;
 - г) являются агрегативно-неустойчивыми.
- 7. Способны существовать только в присутствии стабилизаторов следующие дисперсные системы:
 - а) молекулярно-дисперсные системы;
 - б) ионно-дисперсные;
 - в) гидрофобные коллоидно-дисперсные системы;
 - г) истинные растворы.
- 8. В качестве стабилизаторов при получении гидрофобных коллоидных растворов используют:
 - а) электролиты;

- б) биополимеры;
- в) органические низкомолекулярные неэлектролиты;
- г) избыток растворителя.
- 9. Способны беспрепятственно проходить через все виды фильтров:
 - а) истинные растворы;
 - б) высокодисперсные системы;
 - в) ультрамикрогеторогенные системы;
 - г) микрогетерогенные системы.
- 10. Визуально отличить друг от друга можно:
 - а) истинные и коллоидные растворы;
 - б) грубодисперсные и коллоидно-дисперсные системы;
 - в) высоко –дисперсные и ультрамикрогеторогенные системы;
 - г) истинные растворы и грубо-дисперсные системы.
- 11. Требуют обязательного присутствия стабилизатора:
 - а) истинные растворы;
 - б) гидрофобные золи;
 - в) гидрофильные золи;
 - г) растворы высокомолекулярных соединений.
- 12. Коллоидно-дисперсная система, в которой твёрдые частички дисперсной фазы равномерно распределяются в этиловом спирте, называется:
 - а) лиозолем;
 - б) алкализолем;
 - в) аэрозолем;
 - г) органозолем.
- 13. Коллоидно-дисперсная система, в которой жидкие частички дисперсной фазы равномерно распределяются в газообразном азоте называется:
 - а) лиозолем;
 - б) туманом;
 - в) дымом;
 - г) аэрозолем.
- 14. Коллоидно-дисперсная система, в которой капельки жидкости равномерно распределяются в твёрдом веществе называется:
 - а) твёрдым золем;
 - б) лиозолем;
 - в) эмульсией;
 - г) гидрозолем.
- 15. Дисперсные системы, в которых вещества дисперсной фазы и дисперсионной реды находятся в жидком агрегатном состоянии, называются:
 - а) аэрозолями:
 - б) суспензиями;
 - в) эмульсиями;
 - г) пенами.

- 16. Дисперсные системы, в которых вещество дисперсной фазы находится в твердом агрегатном состоянии, а дисперсионная среда является газом, называются:
 - а) аэрозолями;
 - б) взвесями;
 - в) суспензиями;
 - г) дымами или пылью.
- 17. Дисперсные системы, в которых вещество дисперсной фазы находится в газообразном агрегатном состоянии, а дисперсионная среда является жидкостью, называются:
 - а) аэрозолями;
 - б) пенами;
 - в) туманом;
 - г) эмульсиями.
- 18. Дисперсные системы, в которых вещество дисперсной фазы находится в газообразном агрегатном состоянии, а дисперсионная среда в твердом, называются:
 - а) эмульсиями;
 - б) твердыми пенами;
 - в) студнями;
 - г) взвесями.
- 19. Примером гидрофильной дисперсной системы является:
 - а) определённый сорт глины;
 - б) раствор поверхностно-активного вещества;
 - в) эмульсия гексана в воде;
 - г) эмульсия метанола в бензоле.
- 20. Примером гидрофобной дисперсной системы является:
 - а) водный раствор белка;
 - б) раствор сахарозы в воде;
 - в) эмульсия бензина в воде;
 - г) суспензия частичек золота в спирте.
- 21. К свободнодисперсным системам относятся:
 - а) лиозоли;
 - б) аэрозоли;
 - в) гели;
 - г) пасты.
- 22. К связнодисперсным системам относятся:
 - а) разбавленные эмульсии;
 - б) истинные растворы;
 - в) структуированные пены;
 - г) пасты.
- 23. Какое агрегатное состояние дисперсной фазы в суспензиях?
 - а) жидкое;
 - б) твёрдое;
 - в) газообразное;
 - г) возможно любое.

- 24. Какое агрегатное состояние дисперсной фазы в эмульсиях? а) жидкое;

 - б) твёрдое;
 - в) газообразное;
 - г) возможно любое.
- 25. Какое агрегатное состояние дисперсионной среды в эмульсиях?
 - а) жидкое;
 - б) твёрдое;
 - в) газообразное;
 - г) возможно любое.
- 26. Какое агрегатное состояние дисперсионной среды в суспензиях?
 - а) жидкое;
 - б) твёрдое;
 - в) газообразное;
 - г) возможно любое.
- 27. Какое агрегатное состояние дисперсионной среды в тумане?
 - а) жидкое;
 - б) твёрдое;
 - в) газообразное;
 - г) возможно любое.
- 28. Мерой раздробленности дисперсных систем может служить:
 - а) поперечный размер частиц дисперсной фазы (а);
 - б) степень дисперсности вещества D = 1/a;
 - в) величина поверхностного натяжения частиц дисперсной фазы;
 - г) «время жизни» системы.
- 29. Какое из перечисленных условий не является необходимым для получения коллоидного раствора?
 - а) размер частиц дисперсной фазы;
 - б) объём дисперсионной среды;
 - в) наличие стабилизаторов;
 - г) дисперсная фаза не должна растворяться в дисперсионной среде.
- 30. К дисперсионным методам получения коллоидных частиц относятся:
 - а) метод пептизации;
 - б) метод замены растворителя;
 - в) механическое дробление с помощью шаровых и коллоидных мельниц;
 - г) измельчение с помощью ультразвука.
- 31. К методам физической конденсации при получении золей относятся:
 - а) метод замены растворителя;
 - б) охлаждение паров различных веществ;
 - в) метод пептизации;
 - г) ультразвуковой метод.
- 32. Для ускорения очистки золей от низкомолекулярных примесей электролитов используют:
 - а) электродиализ;
 - б) осмос;
 - в) вивидиализ;

- г) компенсационный диализ.
- 33. Для очистки золей только от определённых низкомолекулярных примесей используют:
 - а) ультрафильтрацию;
 - б) компенсационный диализ;
 - в) фильтрацию;
 - г) осмос.
- 34. Через диализационную мембрану могут свободно проходить в обе стороны:
 - а) частицы растворителя;
 - б) частицы растворителя и низкомолекулярных примесей;
 - в) только частицы дисперсной фазы;
 - г) частицы дисперсной фазы и стабилизатора.
- 35. Скорость диализа возрастает при:
 - а) непрерывной замене растворителя с внешней стороны мембраны;
 - б) замене чистого растворителя с внешней стороны мембраны раствором, содержащим те же низкомолекулярные примеси, что и золь;
 - в) постоянном перемешивании золя;
 - г) разбавлении золя чистым растворителем.
- 36. С помощью диализа очищают коллоидные растворы от:
 - а) низкомолекулярных примесей;
 - б) высокомолекулярных примесей;
 - в) избытка коллоидных частиц;
 - г) избытка электролита, добавленного в качестве стабилизатора.
- 37. Для очистки крови от низкомолекулярных продуктов метаболизма в аппарате «Искусственная почка» используется:
 - а) гель-фильтрация;
 - б) компенсационный диализ;
 - в) вивидиализ;
 - г) ультрафильтрация;
- 38. Седиментация это:
 - а) равномерное распределение коллоидных частиц по всему объему системы;
 - б) уменьшение степени дисперсности системы за счёт протекания процессов агрегации;
 - в) постепенное оседание дисперсных частиц на дно системы за счёт действия сил тяжести;
 - г) уменьшение степени дисперсности системы за счёт действия на частицы молекул растворителя.
- 39. Скорость седиментации коллоидных частичек зависит от:
 - а) заряда гранулы;
 - б) вязкости дисперсной среды;
 - в) массы коллоидных частиц:
 - г) температуры раствора.
- 40. Стабилизаторы, добавляемые в коллоидные растворы, способствуют:
 - а) увеличению кинетической устойчивости золя;
 - б) увеличению агрегационной устойчивости золя;

- в) ускорению броуновского движения коллоидных частиц;
- г) уменьшению общей устойчивости золей.
- 41. Кинетическая устойчивость золей возрастает при:
 - а) увеличении температуры;
 - б) уменьшении температуры;
 - в) возрастании массы коллоидных частиц;
 - г) уменьшении массы коллоидных частиц.
- 42. Агрегативная устойчивость золей возрастает при:
 - а) увеличении температуры;
 - б) уменьшении температуры;
 - в) увеличении заряда гранулы;
 - г) увеличении размеров диффузного слоя.
- 43. Кинетическая устойчивость золей обеспечивается:
 - а) броуновским движением коллоидных частиц;
 - б) процессом диффузии коллоидных частиц;
 - в) действием стабилизаторов;
 - г) действием силы тяжести на коллоидную частицу.
- 44. Агрегативная устойчивость золей обеспечивается:
 - а) действием стабилизаторов;
 - б) возникновением заряда на грануле;
 - в) образованием диффузного слоя частиц;
 - г) соударением молекул растворителя с коллоидными частицами.
- 45. На скорость движения коллоидной частицы в золе оказывает влияние:
 - а) температура системы;
 - б) вязкость системы;
 - в) природа самой частицы;
 - г) размеры частицы;
- 46. Какие факторы способствуют возрастанию кинетической устойчивости золя?
 - а) сила тяжести, действующая на частицу;
 - б) интенсивность теплового движения частиц;
 - в) величина расклинивающего давления между столкнувшимися частицами;
 - г) сила поверхностного натяжения частицы.
- 47. Какие факторы способствуют уменьшению кинетической устойчивости золя?
 - а) сила тяжести, действующая на частицу;
 - б) интенсивность теплового движения частиц;
 - в) величина расклинивающего давления между столкнувшимися частицами;
 - г) сила поверхностного натяжения частицы.
- 48. Какие факторы способствуют поддержанию агрегативной устойчивости?
 - а) сила тяжести, действующая на частицу дисперсной фазы;
 - б) природа частицы;
 - в) величина расклинивающего давления между частицами дисперсной фазы;
 - г) величина заряда на поверхности гранулы.

- 49. Агрегативная устойчивость золя не зависит от:
 - а) силы тяжести, действующей на частицу;
 - б) интенсивности теплового движения молекул дисперсионной среды;
 - в) величины расклинивающего давления, возникающего между столкнувшимися частицами;
 - г) температуры золя.
- 50. Количественная оценка броуновского движения коллоидной частицы определяется с помощью уравнения:
 - a) $\Delta s = v \cdot \Delta t$
 - δ) $\Delta x^2 = RTt / 3\pi N_A \eta r$
 - B) $v = k \cdot C_A^a \cdot C_B^b$
 - Γ) $v = 2r^2(\rho_{\phi} \rho_{c})g/9\eta$
- 51. Эффект Тиндаля для золей обусловлен:
 - а) диффузией коллоидных частиц;
 - б) броуновским движением коллоидных частиц;
 - в) протеканием процесса опалесценции;
 - г) седиментацией коллоидных частиц.
- 52. С помощью ультрамикроскопа можно:
 - а) прямым наблюдением определить размеры и форму коллоидных частиц;
 - б) подсчитать число коллоидных частиц в единице объема золи;
 - в) измерить смещение или сдвиг частицы;
 - г) оценить приблизительную массу частицы.
- 53. Эффект Тиндаля характерен для:
 - а) истинных растворов;
 - б) ионно-дисперсных систем;
 - в) молекулярно-дисперсных систем;
 - г) коллоидно-дисперсных систем.
- 54. Броуновское движение коллоидных частиц является результатом:
 - а) действия стабилизаторов;
 - б) соударений молекул дисперсионной среды с коллоидными частицами;
 - в) соударений между коллоидными частицами;
 - г) теплового движения самих коллоидных частичек.
- 55. На величину осмотического давления в золе оказывают влияние:
 - а) только число частиц дисперсной фазы;
 - б) частицы дисперсной фазы, стабилизатора, а так же низкомолекулярных примесей, содержащихся в золе;
 - в) природа частиц дисперсной фазы;
 - г) только частицы растворителя.
- 56. Как ведёт себя осмотическое давление коллоидных растворов во времени?
 - а) не изменятся;
 - б) уменьшается;
 - в) растёт;
 - г) снижается, а затем резко возрастает.

- 57. От какого из ниже перечисленных факторов не зависит интенсивность броуновского движения?
 - а) размера частиц;
 - б) природы частиц;
 - в) температуры золя;
 - г) вязкости среды.
- 58. Количественную оценку броуновского движения частицы в золе можно дать с помощью:
 - а) уравнения Эйнштейна-Смолуховского;
 - б) закона Фика;
 - в) закона Вант-Гоффа;
 - г) закона разбавления Оствальда.
- 59. Осмотическое давление коллоидных растворов обусловлено:
 - а) только числом частиц дисперсной фазы;
 - б) только низкомолекулярными примесями, присутствующими в золе;
 - в) числом частиц дисперсной фазы и низкомолекулярными примесями, присутствующими в золе;
 - г) только присутствием в золе стабилизатора.
- 60. Для коллоидных и истинных растворов с одинаковым массовым содержанием растворенного вещества осмотическое давление будет:
 - а) одинаковым;
 - б) для коллоидного раствора во много раз меньше;
 - в) у истинного раствора во много раз меньше;
 - г) у истинного раствора немного ниже, чем у коллоидного раствора.
- 61. На скорость движений коллоидных частицы в золе оказывает влияние:
 - а) температура системы;
 - б) вязкость системы;
 - в) природа самой частицы;
 - г) размеры частицы.
- 62. Причиной агрегативной неустойчивости золей являются:
 - а) большая межфазная поверхность;
 - б) избыточный запас поверхностной энергии Гиббса;
 - в) малое осмотическое давление золей;
 - г) малая скорость диффузии коллоидных частиц.
- 63. Согласно закону Рэлея интенсивность рассеянного света прямо пропорциональна:
 - а) длине его волны;
 - б) интенсивности падающего света:
 - в) вязкости среды;
 - г) числу частиц в единице объема золя.
- 64. Согласно закону Рэлея интенсивность рассеянного света для золей обратно пропорциональна:
 - а) длине волны;
 - б) квадрату длины волны;
 - в) четвёртой степени длины волны;
 - г) шестой степени длины волны.

- 65. С помощью какого метода можно косвенным путем приблизительно оценить радиус коллоидных частиц?
 - а) электрофореза;
 - б) ультрамикроскопии;
 - в) офтальмоскопии;
 - г) кондуктометрии.
- 66. Каково соотношение размеров частиц дисперсной фазы в истинном растворе и длин волн видимого света?
 - а) диаметр частицы значительно больше длин волн;
 - б) диаметр частицы примерно равен длинам волн;
 - в) диаметр частицы значительно меньше длин волн;
 - г) диаметр частиц больше длины волны красного цвета.
- 67. Точные размеры и форму коллоидных частиц можно определить:
 - а) визуально
 - б) с помощью светового микроскопа;
 - в) с помощью ультрамикроскопа;
 - г) с помощью электронного микроскопа.
- 68. Для получения коллоидной частицы конденсационным методом может быть использована следующая реакция:
 - a) $Na_2CO_3 + H_2SO_4 \rightarrow$;
 - б) HCI + NaOH \rightarrow :
 - B) BaCI₂ + Na₂SO₄ \rightarrow ;
 - r) AgNO_{3 +} NaCI \rightarrow .
- 69. Можно получить водные коллоидные растворы следующих веществ:
 - а) хлорида натрия;
 - б) серы;
 - в) иодида серебра;
 - г) сульфата натрия.
- 70. В мицелле, которая образуется в результате смешивания растворов BaCI₂ и Na₂SO₄ (избыток), потенциалопределяющими являются ионы:
 - a) Ba^{2+}
 - б) CI⁻
 - B) Na^+
 - Γ) SO₄²⁻.
- 71. В мицелле, которая образуется в результате смешивания растворов BaCI₂ (избыток) и Na₂SO₄, потенциалопределяющими являются ионы:
 - a) Ba^{2+}
 - б) CI⁻
 - в) Na⁺
 - Γ) SO_4^{2-} .
- 72. В мицелле, которая образуется в результате смешивания растворов AgF и KCl (избыток), противоионами являются ионы:
 - a) Ag^+ ;
 - б) F;

- B) K^+ ;
- г) CI⁻.
- 73. В мицелле, которая образуется в результате смешивания растворов AgF (избыток) и КСl, противоионами являются ионы:
 - a) Ag^+ ;
 - б) F⁻;
 - B) K^+ ;
 - г) CI⁻.
- 74. Мицелла, имеющая строение $\{m[AgI]nAg^{+}(n-x)NO_{3}^{-}\}^{X+}xNO_{3}^{-}$ образуется если:
 - а) исходные вещества AgNO₃ и KI взяты в эквимолярном соотошении;
 - б) нитрат серебра взят в избытке по сравнению с иодидом калия;
 - в) иодид калия взят в избытке по сравнению с нитратом серебра;
 - г) исходные вещества провзаимодействуют друг с другом без остатка.
- 75. Первичный потенциал, возникающий на поверхности коллоидной частицы, называется:
 - а) редокс-потенциалом;
 - б) диффузионным потенциалом;
 - в) электротермодинамическим;
 - г) электрокинетическим.
- 76. Твёрдая часть коллоидной частицы в гидрозоле называется:
 - а) агрегатом;
 - б) ядром;
 - в) гранулой;
 - г) мицеллой.
- 77. Адсорбционный слой гранулы в гидрофобном золе образован:
 - а) только потенциалопределяющими ионами;
 - б) противоионами и молекулами растворителя;
 - в) потенциалопределяющими ионами и противоионами;
 - г) молекулами растворителя.
- 78. Мицелла, образующаяся при смешивании растворов NaBr и AgF (избыток), имеет следующую формулу:
 - a) $\{m[NaBr]nF^{-}\}^{x-}nAg^{+};$
 - δ) {m[AgBr]nAg⁺(n-x)F⁻}^{x+}xF⁻;
 - B) $\{m[AgBr]nF^{-}(n-x)Ag^{+}\}^{x-}xAg^{+};$
 - Γ) {m[AgF]nNa⁺} $^{x+}$ nBr⁻.
- 79. Мицелла, образующаяся при смешивании растворов NaBr (избыток) и AgF, имеет следующую формулу:
 - a) $\{m[NaBr]nF^{-}\}^{x-}nAg^{+};$
 - δ) {m[AgBr]nAg(n-x)F⁻} $^{x+}xF^{-}$;
 - B) $\{m[AgBr]nBr^{-}(n-x)Na^{+}\}^{x-}xNa^{+};$
 - Γ) {m[AgF]nNa⁺} $^{x+}$ nBr⁻.
- 80. Мицелла, образующаяся при смешивании растворов BaCI₂ (избыток) и Na₂SO₄, имеет следующую формулу:
 - a) $\{m[Na_2SO_4]nBa^{2+}\}^{x+}2nCI^{-}$
 - 6) $\{m[BaCI_2]nSO^{2-}_4\}^{x-}2nCI;$
 - B) $\{m[BaSO_4]nBa^{2+}(2n-x)CI^{-}\}^{x+}xCI^{-};$

- Γ) {m[BaSO₄]nSO₄²⁻(2n-x)Na⁺}^{x-}xNa+.
- 81. Мицелла, образующаяся при смешивании растворов BaCI₂ и Na₂SO₄ (избыток) имеет следующую формулу:
 - a) $\{m[Na_2SO_4]nBa^{2+}\}^{x+2}nCI^{-1}$
 - б) $\{m[BaCI_2]nSO^{2-}_{4}\}^{\text{ж-}}2nCI;$
 - B) $\{m[BaSO_4]nBa^{2+}(2n-x)CI^-\}^{x+}xCI^-;$
 - Γ) {m[BaSO₄]nSO₄²⁻(2n-x)Na⁺}^{x-}xNa+.
- 82. Твердая часть коллоидной частицы, способная перемещаться во внешнем электрическом поле, называется:
 - а) диффузным слоем;
 - б) адсорбционным слоем;
 - в) гранулой;
 - г) ядром.
- 83. Потенциал, возникающий на грануле коллоидной частицы, называется:
 - а) диффузным;
 - б) электрокинетическим;
 - в) окислительно-восстановительным;
 - г) ξ-потенциалом.
- 84. Явление движения частиц дисперсной фазы золя в электрическом поле относительно неподвижной дисперсионной среды называется:
 - а) электроосмос;
 - б) электрофорез;
 - в) диффузия;
 - г) диализ.
- 85. В диффузном слое коллоидной частицы находятся:
 - а) потенциалопределяющие ионы;
 - б) противоионы;
 - в) молекулы растворителя и потенциалопределяющие ионы;
 - г) только молекулы растворителя.
- 86. Электрофорез и электроосмос возникают в гидрозоле при :
 - a) помещении в него электродов, подключенных к различным полюсам, источника постоянного тока;
 - б) помещении его во внешнее электрическое поле;
 - в) осуществлении процесса диализа;
 - г) осуществлении броуновского движения частиц дисперсной фазы.
- 87. Электроосмос это перемещение под действием внешнего электрического поля:
 - а) молекул растворителя через полупроницаемую мембрану;
 - б) электрически заряженных гранул через полупроницаемую мембрану;
 - в) жидкой дисперсионной среды относительно неподвижной дисперсной фазы;
 - г) молекул стабилизатора через полупроницаемую мембрану.
- 88. Потенциал протекания возникает при:
 - а) помещении золя во внешнее электрическое поле;
 - б) помещении золя во внешнее магнитное поле;

- в) механическом перемещении дисперсионной среды относительно неподвижной дисперсной фазы;
- г) механическом проталкивании воды через пористую диафрагму или капилляр.

89. Потенциал седиментации возникает при:

- a) механическом перемещении дисперсионной среды относительно неподвижной дисперсной фазы;
- б) механическом перемещении частиц дисперсной фазы золя относительно неподвижной дисперсионной среды;
- в) при оседании взвешенных частиц песка в воде;
- г) помещении золя во внешнее электрическое поле.

90. Электрофорез используют:

- а) при нанесении защитных и декоративных покрытий;
- б) для очистки дыма в заводских трубах от частиц сажи и пыли;
- в) при обезвоживании и сушке пористых материалов;
- г) для изучения фракционного состава биологических жидкостей.

91. Электроосмос используют:

- а) для образования плёнки оксидов щелочноземельных металлов на вольфрамовых нитях радиоламп;
- б) для понижения уровня грунтовых вод;
- в) для определения изоэлектрической точки белка;
- г) для местного введения через кожную поверхность водорастворимых лекарственных препаратов.

92. Коагуляция – это процесс:

- а) равномерного распределения коллоидных частиц по всему объему раствора;
- б) объединения коллоидных частиц в более крупные агрегаты;
- в) перемещения коллоидных частиц во внешнем электрическом поле:
- г) оседания коллоидных частиц под действием силы тяжести.

93. Скрытая коагуляция фиксируется:

- а) визуально на основании изменения окраски золя, образования в нем мути или осадка;
- б) на основании уменьшения интенсивности броуновского движения частиц дисперсной фазы;
- в) на основании уменьшения скорости электрофореза при неизменных внешних условиях;
- г) на основании повышения температуры в системе.

94. Явная коагуляция фиксируется:

- а) на основании изменения интенсивности светорассеивания;
- б) визуально на основании изменения окраски золя, образования в нем мути или осадка;
- в) на основании уменьшения величины поверхностного потенциала мицеллы;
- г) на основании уменьшения размеров диффузного слоя мицеллы.

95. Порог коагуляции – это то минимальное количество электролита (в ммолях), которое нужно добавить к 1 литру золя, чтобы:

- а) началась скрытая коагуляция;
- б) началась явная коагуляция;
- в) дисперсная фаза полностью выпала в осадок;
- г) коагуляция еще не началась.

- 96. Коагуляция золей электролитами подчиняется:
 - а) правилу Дюкло-Траубе;
 - б) правилу Шульца-Гарди;
 - в) принципу Ле-Шателье;
 - г) правилу Вант-Гоффа.
- 97. Подвергаться пептизации могут:
 - а) конденсационно-устойчивые дисперсные системы;
 - б) истинные растворы;
 - в) молекулярно- и ионо-дисперсные системы;
 - г) газовые смеси.
- 98. На агрегативную устойчивость золя оказывает существенное влияние:
 - а) любой ион добавленного электролита;
 - б) только те ионы электролита, величина заряда которых больше единицы;
 - в) только те ионы электролита, знак заряда которых совпадает со знаком заряда противоионов мицеллы;
 - г) только те ионы электролита, величина заряда которых больше величины заряда потенциалопределяющих ионов.
- 99. Коагулирующее действие на золь оказывают те ионы электролита, которые имеют знак заряда:
 - а) одноименный со знаком заряда потенциалопределяющих ионов;
 - б) обратный знаку заряда потенциалопределяющих ионов;
 - в) одноименный со знаком заряда противоионов мицеллы;
 - г) обратный знаку заряда противоионов мицеллы.
- 100. Коагулирующее действие на мицеллу

 ${m[AlPO_4]nPO_4^{3-}(3n-x)Na^+}^{x-}xNa^+$ окажут следующие ионы:

- a) Cl-:
- б) К+;
- B) SO^{2-}_{4} ;
- г) Ca²⁺.
- 101. Коагулирующее действие на мицеллу

 ${m[AlPO_4]nAl^{3+}(3n-x)Cl^{-}}^{x+}xCl^{-}$ окажут следующие ионы:

- a) Br_:
- б) K⁺;
- B) SO^{2} -4:
- г)Ca²⁺.
- 102. Наибольшей коагулирующей способностью по отношению к мицелле $\{m[BaSO_4]nSO_4^{2-}(2n-x)K^+\}^{x-}xK^+$ обладает ион:
 - a) Na^+ ;
 - б) Mg²⁺;
 - B) Al^{3+} ;
 - г) Cl⁻.
- 103. Наибольшей коагулирующей способностью по отношению к мицелле $\{m[BaSO_4]nBa^{2+}(2n-x)I^-\}^{x+}xI^-$ обладает ион:
 - a) S^{2-} ;
 - σ) [Fe(CN)₆]³⁻;

- B) Al^{3+} ;
- г) Cl⁻.
- 104. В ряду однозарядных ионов Li⁺; Na⁺; К⁺; Rb⁺ наибольшей коагулирующей способностью будет обладать ион:
 - a) Li^+ ;
 - б) Na⁺;
 - B) K^+ ;
 - Γ) Rb⁺.
- 105. В ряду однозарядных ионов Li⁺; Na⁺; К⁺; Rb⁺ наименьшей коагулирующей способностью будет обладать ион:
 - a) Li^+ ;
 - б) Na⁺;
 - B) K^+ ;
 - Γ) Rb⁺.
- 106. Не окажут заметного коагулирующего воздействия на мицеллу $\{m[AgI]nAg^+ (n-x)NO_3^-\}^{x+}xNO_3^-$ следующие ионы:
 - a) Na^+ ;
 - б) SO₄²⁻;
 - в) Cl⁻;
 - Γ) K^+ .
- 107. Не окажут заметного коагулирующего воздействия на мицеллу $m[AgI]nI^{-}(n-x)K^{+}\}^{x-}xK^{+}$ следующие ионы:
 - a) Na^+ ;
 - б) SO₄²⁻;
 - в) Cl⁻;
 - Γ) K^+ .
- 108. При чередовании зон коагуляции происходит:
 - а) перезарядка гранулы, т.е. изменение первоначального знака её заряда на противоположный;
 - б) замещение потенциалопределяющих ионов гранулы, коагулирующими ионами электролита;
 - в) замещение адсорбированных на грануле противоионов коагулирующими ионами электролита;
 - г) вытеснение потенциалопределяющих ионов мицеллы в диффузный слой.
- 109. При достижении области быстрой коагуляции золя в результате добавления электролита:
 - а) величина заряда гранулы уменьшается практически до нуля;
 - б) размеры диффузного слоя мицеллы становятся минимальными;
 - в) размеры диффузного слоя мицеллы становятся максимальными;
 - г) электрокинетический потенциал гранулы достигает своей максимальной величины.
- 110. В области медленной коагуляции при добавлении к золю электролита:
 - а) происходит непрерывное увеличение заряда гранулы;
 - б) происходит постепенное уменьшение электротермодинамического или поверхностного потенциала гранулы до нуля;

- в) наблюдается переход скрытой коагуляции в явную;
- г) происходит постепенное уменьшение размеров диффузного слоя мицеллы.
- 111. В ряду ионов с одинаковой величиной заряда коагулирующая способность:
 - а) возрастает с увеличением их радиуса;
 - б) уменьшается с возрастанием их массы;
 - в) зависит только от природы иона;
 - г) уменьшается от простых ионов к сложным.
- 112. Скорость коагуляции определяется:
 - а) уменьшением числа коллоидных частиц в единице объема золя за единицу времени;
 - б) скоростью движения коллоидной частицы в золе;
 - в) изменением среднего сдвига коллоидной частицы за определённый промежуток времени Δt ;
 - Γ) уменьшением размеров коллоидных частиц за определённый промежуток времени Δt .
- 113. Добавление высокомолекулярных соединений (белков, некоторых полисахаридов) в золь:
 - а) усиливает коагуляцию;
 - б) уменьшает коагуляцию;
 - в) не влияет на коагуляцию;
 - г) сначала усиливает, а затем уменьшает коагуляцию.
- 114. Чередование зон коагуляции наблюдается при добавлении в золь:
 - а) полимеров;
 - б) гидрофобных органических соединений;
 - в) электролитов, содержащих однозарядные ионы;
 - г) электролитов, содержащих многозарядные ионы.
- 115. Взаимная коагуляция золей может наблюдаться при смешивании:
 - а) любых двух коллоидных растворов;
 - б) двух коллоидных растворов с противоположно заряженными гранулами;
 - в) двух коллоидных растворов с одноименно заряженными гранулами;
 - г) двух коллоидных растворов с нейтральными гранулами.
- 116. Начало явной коагуляции в золе визуально обнаруживается на основании:
 - а) изменения цвета раствора;
 - б) помутнения;
 - в) уменьшения числа частиц дисперсной фазы в единице объема золя;
 - г) образования осадка.
- 117. О протекании скрытой коагуляции в золе можно судить на основании:
 - а) уменьшения скорости диффузии частичек золя;
 - б) увеличении интенсивности броуновского движения;
 - в) уменьшения интенсивности броуновского движения;
 - г) увеличения величины электрокинетического потенциала гранулы
- 118. Явление усиления коагулирующего действия смеси электролитов называется:
 - а) аддитивность;
 - б) антагонизм;
 - в) синергизм;
 - г) индифферентность.

- 119. При достижении порога коагуляции наблюдается:
 - а) исчезновение заряда гранулы;
 - б) уменьшение электрокинетического потенциала до величины ~ 29 мВ;
 - в) образование на грануле максимального заряда;
 - г) смена знака заряда гранулы.

120. Явление суммирования коагулирующего действия смеси электролитов называется:

- а) аддитивность;
- б) антагонизм;
- в) синергизм;
- г) индифферентность.

121. Золотое число служит:

- а) для количественной характеристики защитного действия биополимера по отношению к любому золю;
- б) для количественной характеристики защитного действия биополимера по отношению к золю золота;
- в) для определения порога коагуляции ионов золота;
- г) для определения величины электрокинетического потенциала гранулы в коллоидном растворе золота.

122. Железное число показывает:

- а) минимальное количество миллиграмм сухого вещества биополимера, которое нужно растворить в 10мл золя железа, чтобы предотвратить коагуляцию при добавлении к нему 1мл 10% раствора NaCl;
- б) минимальное количество миллиграмм сухого вещества биополимера, которое нужно растворить в 10мл золя железа, чтобы вызвать в нём явную коагуляцию;
- в) минимальное количество (ммоль) ионов Fe^{2+} или Fe^{3+} , которое нужно добавить в 1π раствора биополимера, чтобы вызвать в нём образование осадка;
- г) минимальное количество сухого вещества биополимера, которое нужно добавить к 1л золя железа, чтобы достичь порога коагуляции.

123. Броуновское движение характерно частицам дисперсной фазы в:

- а) истинных растворах;
- б) грубо-дисперсных системах;
- в) коллоидно-дисперсных системах;
- г) растворах биополимеров.

124. При повышении температуры:

- а) скорость и интенсивность броуновского движения повышается;
- б) кинетическая энергия коллоидных частиц возрастает;
- в) агрегативная устойчивость золя увеличивается;
- г) силы расклинивающего давления, возникающие между диффузными слоями столкнувшихся коллоидных частиц, увеличиваются.

125. Наименьшей агрегативной устойчивостью обладают:

- а) нестабилизированные гидрофобные золи;
- б) гидрофильные золи;
- в) истинные растворы низкомолекулярных веществ;
- г) растворы биополимеров.

- 126. Наименьшей кинетической устойчивости обладают:
 - а) истинные растворы;
 - б) стабилизированные гидрофобные золи;
 - в) растворы биополимеров;
 - г) грубодисперсные системы.
- 127. Во время операции для предотвращения свёртываемости крови в неё вводят:
 - а) раствор гепарина;
 - б) раствор капроновой кислоты;
 - в) раствор полиглюкина;
 - г) изотонический раствор глюкозы.
- 128. Для остановки внутренних кровотечений в кровяное русло вводят:
 - а) изотонический раствор глюкозы;
 - б) раствор капроновой кислоты;
 - в) раствор модифицированного декстрана;
 - г) раствор гепарина.
- 129. Протекание коагуляционных процессов в крови усилится при введении вместо изотонического раствора NaCl:
 - а) изотонического раствора глюкозы;
 - б) изотонического раствора MgCl₂;
 - в) гипотонического раствора NaCl;
 - г) изотонического раствора капроновой кислоты.
- 130. Скорость коагуляции стабилизированного гидрофобного золя увеличится при добавлении в него:
 - а) раствора глюкозы;
 - б) раствора белка;
 - в) раствора NaCl;
 - г) раствора глюконата кальция.
- 131. Обязательное добавление стабилизаторов необходимо при получении устойчивого:
 - а) гидрофобного золя;
 - б) гидрофильного золя;
 - в) истинного раствора;
 - г) раствора биополимера.
- 132. В мицелле, образующейся при смешивании растворов $FeCI_3$ и $K_4[Fe(CN)_6]$ (избыток), для ионов $[Fe(CN)_6]^{-4}$ верными будут следующие утверждения:
 - а) они формирует диффузный слой;
 - б) они являются потенциалопределяющими ионами;
 - в) они входят в состав двойного электрического слоя;
 - г) от их количества зависит значение электротермодинамического потенциала.
- 133. Наибольшей коагулирующей способностью по отношению к мицелле $\{m[Fe(OH)_3]nFeO^+(n-x)Cl^-\}^{x+}xCl^-$ обладает ион:
 - a) Fe^{3+} ;
 - б) SO₄²-;
 - B) $[Fe(CN)_6]^{3-}$;
 - г) Cl⁻.

134. Для золя, приготовленного из растворов H ₂ SO ₄ и BaCl ₂ (избыток), минимальное значение порога коагуляции будет иметь электролит:
a) Kl;
б) Fe ₂ (SO ₄) ₃ ; в) CaCl ₂ ;
Γ) Al(NO ₃) ₃ .
Тесты к теме: Растворы биополимеров

Гесты к теме: Растворы биополимеров

- 1. Исходное низкомолекулярное вещество, из которого синтезирован полимер, называется:
 - а) элементарным звеном;
 - б) структурным звеном;
 - в) мономером;
 - г) простейшим звеном.
- 2. К биополимерам относятся:
 - а) полисахариды;
 - б) белки;
 - в) нуклеиновые кислоты;
 - г) полиамидные волокна.
- 3. Линейными полимерами являются:
 - а) амилопектин;
 - б) целлюлоза;
 - в) желатин;
 - г) натуральный каучук.
- 4. К разветвленным полимерам относятся:
 - а) декстран;
 - б) амилоза;
 - в) вулканизированный каучук;
 - г) нуклеиновые кислоты.
- 5. К синтетическим полимерам относятся:
 - а) желатин;
 - б) капрон;
 - в) лигнин;
 - г) полиэтилен.
- 6. К искусственным полимерам относятся:
 - а) ацетатцеллюлоза;
 - б) декстран;
 - в) лавсан;
 - г) гепарин.
- 7. К сетчатым полимерам относятся:
 - а) резина;
 - б) фенолформальдегидные смолы;
 - в) гликоген;
 - г) амилопектин.

- 8. В результате реакции полимеризации образуются из соответствующих мономеров: а) нуклеиновые кислоты; б) натуральный каучук; в) желатин; г) полипропилен. 9. В результате реакции поликонденсации образуются из соответствующих мономеров: а) полисахариды; б) белки; в) нуклеиновые кислоты; г) полиэтилен. 10. В реакцию полимеризации вступают: а) ароматические углеводороды; б) насыщенные углеводороды; в) ненасыщенные углеводороды; г) циклоалканы. 11. В реакцию поликонденсации вступают: а) непредельные мономеры; б) любые углеводороды; в) только кислородсодержащие мономеры; г) мономеры, являющиеся монофункциональными или гетерофункциональными соединениями. 12. Полисахарид из соответствующих моносахаридов образуется в результате: а) окисления; б) поликонденсации; в) изомеризации; г) полимеризации. 13. Гликоген-это: а) моносахарид; б) дисахарид; в) представитель декстринов; г) полисахарид.
- 14. Линейные (неразветвлённые) макромолекулы крахмала называются:
 - а) лигнин;
 - б) амилоза;
 - в) амилопектин;
 - г) гликоген.
- 15. Относительная молекулярная масса макромолекулы целлюлозы составляет 405000. Степень полимеризации целлюлозы равна:
 - a) 2000;
 - б) 2250;
 - в) 2500;
 - г) 2750.

- 16. Средняя степень полимеризации крахмала составляет 1800. Средняя относительная молекулярная масса крахмала равна:
 - a) 291600:
 - б) 302500;
 - в) 324000;
 - г) 342500.
- 17. Полиэфирным волокном является:
 - а) лавсан;
 - б) капрон;
 - в) нейлон;
 - г) шерсть.
- 18. Четвиртичную структуру имеют:
 - а) любые белки;
 - б) только белки растительного происхождения;
 - в) белки, состоящие из нескольких пептидных цепей;
 - г) не только белки, но и разветвлённые полисахариды.
- 19. Денатурация белка это:
 - а) нарушение его первичной структуры;
 - б) гидролиз его молекулы под действием ферментов;
 - в) разложение молекул белков с образованием летучих веществ, обладающих специфическим запахом;
 - г) нарушение его третичной структуры.
- 20. Денатурация белка всегда наблюдается:
 - а) при его растворении в воде;
 - б) при добавлении к раствору белка больших количеств сильных кислот;
 - в) при нагревании раствора белка;
 - г) при встряхивании его раствора.
- 21. Общими для растворов полимеров и коллоидных растворов являются следующие свойства:
 - а) наличие большой поверхности раздела между дисперсной фазой и дисперсионной средой;
 - б) частицы дисперсной фазы имеют размеры 10^{-7} м- 10^{-9} м;
 - в) высокая термодинамическая неустойчивость;
 - г) частицы дисперсной фазы не проходят через диализационные мембраны.
- 22. Растворы полимеров в отличие от коллоидных растворов гидрофобных веществ:
 - а) могут быть гомогенными системами;
 - б) являются гетерогенными системами;
 - в) способны образовываться самопроизвольно, не требуя для этого стабилизаторов;
 - г) не способны образовываться самопроизвольно без наличия стабилизаторов и затрат внешней энергии.
- 23. Вторичная и третичная структуры молекул белков обеспечиваются образованием:
 - а) водородных и дисульфидных связей;
 - б) ионных связей;
 - в) металлических связей;

- г) ковалентных связей, образованных по донорно-акцепторному механизму.
- 24. Первичный этап растворения твердого образца полимера называется иначе:
 - а) набухание;
 - б) высаливание;
 - в) старение;
 - г) денатурация.
- 25. При растворении в воде биополимеров происходит:
 - а) разрыв меж- и внутримолекулярных водородных связей;
 - б) гидратация гидрофильных функциональных групп, расположенных в элементарных звеньях;
 - в) разрыв химических связей между структурными звеньями;
 - г) образование двойного электрического слоя между макромолекулой и раствором.

26. Процесс набухания – это:

- а) одностороннее проникновение небольших и подвижных молекул растворителя в твёрдый образец полимера;
- б) медленная диффузия макромолекул полимера из твёрдого образца в жидкую фазу растворителя;
- в) одновременная двусторонняя диффузия растворителя и полимера друг в друга;
- г) сольватация определённых участков макромолекулы полимера.
- 27. Полимеры, полученные из непредельных углеводородов, хорошо набухают:
 - а) в полярных растворителях;
 - б) как в полярных, так и в неполярных растворителях;
 - в) в неполярных растворителях;
 - г) практически не набухают в любом растворителе.
- 28. Биополимеры: белки, полисахариды лучше набухают:
 - а) в полярных растворителях;
 - б) как в полярных, так и в неполярных растворителях;
 - в) в неполярных растворителях;
 - г) практически не набухают в любом растворителе.
- 29. Теплота набухания это:
 - а) энергия, затраченная на увеличение объема образца полимера при набухании;
 - б) энергия, выделяющаяся при образовании сольватной оболочки вокруг макромолекулы полимера;
 - в) энергия, затраченная на изменение формы макромолекул в процессе набухания;
 - г) энергия, выделяющаяся при отрыве макромолекулы от твёрдого образца и переводе её в жидкую фазу растворителя.
- 30. Теплота набухания зависит от:
 - а) формы макромолекулы;
 - б) размеров макромолекулы;
 - в) природы растворителя;
 - г) природы полимера.
- 31. Степень набухания рассчитывается по формуле:
 - a) $\alpha = m_0 m/m$;
 - δ) $\alpha = m m_0 / m_0$;
 - B) $\alpha = V_0 V/V$;

- Γ) $\alpha = V V_0 / V_0$.
- 32. Степень набухания зависит главным образом от:
 - а) теплоты набухания полимера;
 - б) прочности межмолекулярных связей в полимере;
 - в) исходных массы и размеров твёрдого образца полимера;
 - г) длины макромолекулы полимера.
- 33. Способны к неограниченному набуханию в соответствующем растворителе:
 - а) полимеры, имеющие линейную форму макромолекулы;
 - б) практически все полимеры;
 - в) полимеры с многочисленными мостичными связями между линейными макромолекулами;
 - г) только биополимеры.
- 34. Способны только к ограниченному набуханию в любом растворителе:
 - а) линейные полимеры;
 - б) сетчатые полимеры;
 - в) линейные полимеры со стереорегулярной структурой;
 - г) синтетические полимеры.
- 35. Давления набухания:
 - а) эквивалентно осмотическому давлению в образовавшемся растворе полимера;
 - б) равно внешнему давлению, которое нужно приложить к образцу полимера, чтобы остановить увеличение его размеров в процессе набухания;
 - в) равно давлению, возникающему со стороны растворителя на помещённый в него твёрдый образцу полимера;
 - г) эквивалентно атмосферному давлению.
- 36. Степень набухания полимера в жидком растворителе зависит от:
 - а) температуры;
 - б) внешнего давления;
 - в) вида макромолекул (линейных, разветвленных, сетчатых);
 - г) размеров макромолекул полимеров.
- 37. Образование раствора из твердого образца полимера называется иначе:
 - а) ограниченным набуханием;
 - б) неограниченным набуханием;
 - в) коагуляцией;
 - г) пептизацией.
- 38. В изоэлектрическом состоянии на макромолекулах белков:
 - а) не возникают электрические заряды;
 - б) возникают электрические заряды только одного знака;
 - в) возникают заряды противоположных знаков, но в одинаковом количестве;
 - г) возникают заряды противоположных знаков в разных количествах.
- 39. Изоэлектрическая точка для кислых белков лежит в области рН:
 - а) меньше 7;
 - б) больше 7;
 - в) равной 7;
 - г) больше 12.

- 40. Основной белок может находиться в изоэлектрическом состоянии в:
 - а) кислой среде;
 - б) нейтральной среде;
 - в) щелочной среде;
 - г) в любой среде.
- 41. Для перевода кислого белка в изоэлектрическое состояние к его раствору нужно добавить:
 - а) некоторое количество сильной кислоты;
 - б) некоторое количество щелочи;
 - в) некоторое количество растворителя;
 - г) некоторое количество любой соли.
- 42. Для перевода основного белка в изоэлектрическое состояние к его раствору нужно добавить:
 - а) некоторое количество сильной кислоты;
 - б) некоторое количество щелочи;
 - в) некоторое количество растворителя;
 - г) некоторое количество любой соли.
- 43. Процесс осаждения полимера из раствора при добавлении электролита называется:
 - а) коагуляцией;
 - б) пептизацией;
 - в) высаливанием;
 - г) диспергированием.
- 44. Высаливанием называется процесс выпадения в осадок белков из раствора в результате:
 - а) уменьшения температуры раствора;
 - б) добавления в больших количествах растворителя, в котором белок не растворяется или растворяется плохо;
 - в) добавления больших количеств электролита;
 - г) повышения внешнего давления над раствором.
- 45. Механизм действия электролитов при высаливании белков:
 - а) аналогичен механизму коагуляции золя в их присутствии;
 - б) зависит от вида электролита;
 - в) объясняется способностью ионов электролита к гидратации;
 - г) объясняется химическим взаимодействием ионов электролита с макромолекулами мономера
- 46. Осаждение белков из водных растворов при добавлении электролита происходит вследствие:
 - а) увеличения их молекулярной массы;
 - б) дегидратации функциональных групп в элементарных звеньях;
 - в) образования межмолекулярных водородных связей;
 - г) химического взаимодействия макромолекул с ионами электролита.
- 47. В отличие от коагуляции высаливание:
 - а) является обратимым процессом;
 - б) является необратимым процессом;
 - в) происходит при добавлении значительно большего количества электролита;

- г) происходит при добавлении значительно меньшего количества электролита.
- 48. Уменьшение устойчивости растворов полимеров при добавлении к ним электролитов объясняется:
 - а) образованием на макромолекулах полимеров зарядов противоположного знака;
 - б) разрушением гидратных оболочек макромолекул и образованием между ними межмолекулярных водородных связей;
 - в) образованием на макромолекулах полимеров зарядов одинакового знака;
 - г) адсорбцией молекул электролитов на полимере.
- 49. Высаливающее действие ионов электролитов зависит от:
 - а) знака их заряда;
 - б) их способности к гидратации;
 - в) их окраски в водном растворе;
 - г) величины их заряда.
- 50. Наименьшей подвижностью во внешнем электрическом поле обладают белковые молекулы:
 - а) имеющие суммарный электрический заряд со знаком «+»;
 - б) имеющие суммарный электрический заряд со знаком «-»;
 - в) имеющие суммарный заряд равный 0;
 - г) находящиеся в изоэлектрическом состоянии.
- 51. Изоэлектрическая точка для основных белков лежит в области рН:
 - а) меньше 5;
 - б) больше 7;
 - в) меньше 1;
 - г) больше 14.
- 52. Подвижность белковых молекул во внешнем электрическом поле зависит от:
 - а) рН раствора;
 - б) величины их суммарного электрического заряда;
 - в) давления над раствором;
 - г) объема раствора.
- 53. Осмотические давление растворов полимеров:
 - а) по своей величине во много раз больше осмотического давления золей;
 - б) зависит от формы и размеров их макромолекул;
 - в) зависит от числа макромолекул в растворе;
 - г) не подчиняется закону Вант-Гоффа.
- 54. Отлокнение от закона Вант-Гоффа для осмотического давления особенно заметно:
 - а) в растворах полимеров с линейными гибкими макромолекулами;
 - б) в растворах полимеров с жёсткими макромолекулами;
 - в) в растворах полимеров с макромолекулами, свёрнутыми в глобулу;
 - г) в растворах биополимеров по сравнению с синтетическими.
- 55. При одной и той же весовой концентрации вязкость растворов полимеров:
 - а) значительно ниже вязкости растворов низкомолекулярных соединений;
 - б) значительно выше вязкости растворов низкомолекулярных соединений;
 - в) значительно ниже вязкости лиофобных золей;

- г) значительно выше вязкости лиофобных золей.
- 56. Вязкость растворов полимеров:
 - а) возрастает с уменьшением гибкости их макромолекул;
 - б) возрастает с увеличением размеров макромолекул и их концентрации в растворе;
 - в) возрастает при увеличении температуры раствора;
 - г) возрастает при увеличении скорости течения жидкости.
- 57. Часть воды в растворе, которая прочно связана с макромолекулами полимера вследствие протекания процессов гидратации, называется иначе:
 - а) связанной;
 - б) гидратационной;
 - в) свободной;
 - г) капиллярной;
- 58. Полиэлектролитами называются:
 - а) низко- и высокомолекулярные электролиты, способные образовывать при диссоциации одной молекулы большое число ионов различной природы;
 - б) полимеры, при диссоциации молекул которых образуется множество небольших подвижных ионов и один многозарядный макроион;
 - в) полимеры, элементарные звенья которых содержат одну или несколько ионогенных функциональных групп;
 - г) полимеры, растворы которых хорошо проводят электрический ток.
- 59. Полиамфолитами называют полимеры:
 - а) содержащие в своём составе только СООН- или SO₃H- группы;
 - б) содержащие в своём составе только NH₂- группы;
 - в) содержащие в своём составе, как кислотные так и основные функциональные группы;
 - г) не содержащие в своём составе ионогенные группы любой природы.
- 60. К полиамфолитам относятся:
 - а) белки:
 - б) полисахариды;
 - в) синтезированные из непредельных углеводородов полимеры;
 - г) природный и синтетический каучуки.
- 61. Изоэлектрической точкой белка является значение рН раствора при котором:
 - а) на макромолекулах не возникает целочисленных электрических зарядов;
 - б) отдельные фрагменты макромолекул белка несут на себе как положительные так и отрицательные заряды, но при этом общий заряд молекулы равен 0;
 - в) макромолекула белка приобретает определённый заряд (положительный или отрицательный), не изменяющийся со временем;
 - г) все макромолекулы белка имеют одинаковый положительный или отрицательный целочисленный заряд.
- 62. Наименьший объём в растворе макромолекулы белка занимают:
 - а) при рН=0;
 - б) при рН>7;
 - в) при рН<7;
 - г) при рН=рІ.
- 63. Степень набухания кислых белков в воде наименьшая:

- а) при рН<<7;
- б) при рН>7;
- в) при рН=0;
- г) при рН=рІ.
- 64. Вязкость раствора белка при постоянной температуре и весовой концентрации достигает минимального значения:
 - а) при рН>>7;
 - б) при рН<<7;
 - в) при рН=рІ;
 - г) при рH=0.